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Motivation

Angular-radial representations are reasonably common in the study of
multivariate extremes.

For a d-dimensional random vector X = (X1, . . . ,Xd) ∈ Rd , it may be
convenient to consider

R = ∥X∥A, W = X/∥X∥B ,

i.e., a radial component and a (pseudo-)angular vector.
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Motivation - multivariate regular variation
Take X to have some common, heavy-tailed (e.g., Fréchet) margins, and
use the L1 norm in both cases.

Then, R > 0 and W takes values on an angular simplex{
w ∈ [0, 1]d :

d∑
i=1

wi = 1

}
.

Under the assumption of multivariate regular variation,

lim
t→∞

Pr(R > tr ,W ∈ B | R > t) =
H(B)

r
.

So, R and W become independent in the limit.

The limiting spectral measure H gives information about the
extremal dependence structure of X .
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Mass on the angular simplex (d = 3)
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Motivation - radial-angular multivariate extremes

More recently, there has been growing interest in radial-angular
approaches for multivariate extremes, e.g.:

geometric extremes;

SPAR models.

For inference and extrapolation, both require modelling or simulation of
an angular component.
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Motivation - SPAR models (Mackay and Jonathan, 2023)

Consider a decomposition of the density of (R,W ) via

fR,W (r ,w) = fW (w) fR|W (r |w).

Then, the multivariate extremes problem relies on estimation of an
angular density fW and a model for the tail of R|W , i.e., for r > u(w)

fR,W (r ,w) = τ fW (w)fGPD(r − u(w);σ(w), ξ(w)),

where τ = Pr(R > u(w)|W = w) is close to 0.

Extrapolation can be achieved by drawing from the angular
distribution, then simulating from the conditional GPD.
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The role of deep learning

Empirical approaches could be used to simulate from the angular
distribution.

This becomes infeasible in higher dimensions.

Parametric models could be used instead.

These may lack the flexibility required to cover the range of possible
structures.

Simulation using generative deep learning approaches could be used.

This can estimate the angular distribution without specifying a
density.
Is less restrictive than relying on exact observations.
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Our focus - simulating angular variables

So, modelling and simulating angular data can play an important
role in multivariate extreme value analysis.

This may also be useful in other settings where angular data arise.

Our question:
Can generative deep learning methods be helpful for this task?
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Spherical coordinates

We focus on the spherical coordinates Θ = (Θ1, . . . ,Θd−1)

Θ1 = atan2

(√
Xd

2 + Xd−1
2 + · · ·+ X2

2,X1

)
,

Θ2 = atan2

(√
Xd

2 + Xd−1
2 + · · ·+ X3

2,X2

)
,

...

Θd−2 = atan2

(√
Xd

2 + Xd−1
2,Xd−2

)
,

Θd−1 = atan2 (Xd ,Xd−1) ,

where Θ1, . . .Θd−2 ∈ [0, π] and Θd−1 ∈ (−π, π]. (Blumenson, 1960)
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Deep learning approaches

Generative adversarial networks (GANs) - Goodfellow et al. (2014)

Normalizing flows

Neural spline flows (NFNSFs) - Durkan et al. (2019)

Masked autoregressive flows (NFMAFs) - Papamakarios et al. (2017)

Flow matching (FM) - Lipman et al. (2022)

Maximum mean discrepancy networks/Energy score networks
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Adaptations for angular variables - GANs

Feedforward neural networks for the generator and the discriminator.

To ensure the spherical coordinates lie in the correct range, we
specify activation functions after the last generator layer as

θi ← π · 1

1 + e−xi
for i = 1, . . . , d − 2,

θd−1 ← π · tanh xd−1.

Note: circular wrapping resulted in some training instabilities.
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Adaptations for angular variables - NFs

For both the NFNSF and NFMAF approaches, we use a
transformation of the form

θi ← π · Φ(xi ) for i = 1, . . . , d − 2,

θd−1 ← (xd−1 mod 2π)− π.

In these cases, the sigmoid has slower convergence at 0 and 1 than
the Gaussian CDF, which led to poor results near the endpoints of
[0, π].

Circular wrapping for the final component worked well in this case.
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Adaptations for angular variables - FM

For flow matching, we don’t need to map onto the angular space,
since flows can be defined directly on the sphere.
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Baseline approach - mixture of vMF distributions

The von Mises-Fisher (vMF) distribution has density

fvMF (x | µ, κ) = cd(κ)e
κµT x , x ∈ Sd−1,

for some concentration κ ≥ 0, mean direction µ ∈ Sd−1 and
normalising constant cd(κ).

This is an angular extension of a multivariate Gaussian distribution.

A mixture of vMF distributions provides a flexible, parametric
approach to modelling angular data. This provides a baseline
method for comparing our deep learning approaches.
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Simulation study - overview

To cover a wide range of examples, we consider the following options:

dimensions d = 5 and d = 10;

datasets of size n = 1, 000, n = 10, 000 and n = 100, 000;

light and heavy-tailed marginal distributions;

five different dependence (copula) structures.
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Simulation study - marginal models

To allow the potential for mass in all orthants, we choose common
marginal models with support on (−∞,∞).

A standard Laplace distribution, having light upper and lower tails.

A ‘double Pareto’ distribution, with heavy upper and lower tails.
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Simulation study - marginal models
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Simulation study - copula models

We consider copulas with different types of dependence structure, taking
into account AD/AI and sparsity:

a Gaussian copula (AI);

a mixture of a Gaussian copula and a student-t copula (AI);

a logistic copula (AD);

a mixture distribution of a logistic copula and an independence
copula (more complex EDS);

a ‘sparse’ Gaussian copula specified such that the variables are
clustered into groups of dependent variables with independence
between groups (AI).
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Simulation study - hyperparameter optimisation

Bespoke hyperparameter tuning for each individual setting is very
time consuming and therefore infeasible.

We instead optimised the architectures for one specific case - the
sparse Gaussian copula with double Pareto margins - and using a
data example.

This seemed reasonable as long as the hyperparameters that were
selected allowed for some flexibility.

Details of our suggested hyperparameters and architectures are in
the paper.
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Simulation study - evaluation strategies

We consider a range of evaluation metrics to assess both marginal and
joint structure.

Numerical metrics - circular CRPS

Histograms and QQ-plots for spherical margins

Scatterplots between pairs of spherical angles

Orthant probability plots to assess full structure
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Simulation study - general takeaways

Using the cCRPS, the baseline approach gave the best results in the
majority of cases, but the results are very close.

Seems difficult to distinguish between methods using cCRPS.

Possibility that cCRPS focuses too much on the marginal fits.

The deep learning methods generally do well at recreating marginal
and dependence structures.

There are some cases where the GAN doesn’t do so well.

But there is no clear overall “winner”.

Marginal distributions do have an effect.

In some cases, we do well for Laplace margins but poorly for the
equivalent double Pareto case.
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Simulation study - some example results

Sparse Gaussian copula, Double Pareto margins, d = 10 and n = 100, 000
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Simulation study - some example results
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Conclusions

The flexibility and scalability offered by generative deep learning
approaches make them suitable candidates for multivariate angular
simulation.

The baseline approach was generally good at capturing marginal
distributions, but struggled with some complex dependence
structures.

No methods can be completely discounted, and there is no individual
‘best’ approach. So model checks and validation are key.
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Avenues for further work

Validation and model comparison is somewhat difficult.

It would be useful to have more metrics for evaluation in
angular/spherical contexts.

Model rankings depend on the metric used.

Hyperparameter tuning is time consuming.

Theoretical developments or general guidelines related to this would
be helpful.

Improvements in computational efficiency could improve the
feasibility of hyperparameter optimisation and uncertainty
assessment.
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Thank you!

Based on the paper:

Wessel, J. B., Murphy-Barltrop, C. J. R. and Simpson, E. S. (2025). A comparison of
generative deep learning methods for multivariate angular simulation. arXiv:2504.21505.

Accompanying code available from https://github.com/callumbarltrop/DeGeMoH

Other references:

Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G. (2019). Neural spline flows.
NeurIPS.

Goodfellow, I. J., et al. (2014). Generative adversarial nets. NeurIPS.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and Le, M. (2022). Flow matching
for generative modeling. ICLR.

Mackay, E. and Jonathan, P. (2023). Modelling multivariate extremes through
angular-radial decomposition of the density function. arXiv:2310.12711.

Papamakarios, G., Pavlakou, T., and Murray, I. (2017). Masked autoregressive flow for
density estimation. NeurIPS.

Contact: emma.simpson@ucl.ac.uk
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