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Motivation

Angular-radial representations are reasonably common in the study of
multivariate extremes.

For a d-dimensional random vector X = (Xi,...,Xy) € RY, it may be
convenient to consider

R=1Xlla, W =X/[X]|s,

i.e., a radial component and a (pseudo-)angular vector.



Motivation - multivariate regular variation

Take X to have some common, heavy-tailed (e.g., Fréchet) margins, and
use the L; norm in both cases.

Then, R > 0 and W takes values on an angular simplex

{wE[O,l]d:zd:W,':l}.
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m So, R and W become independent in the limit.

m The limiting spectral measure H gives information about the
extremal dependence structure of X.
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Motivation - radial-angular multivariate extremes

More recently, there has been growing interest in radial-angular
approaches for multivariate extremes, e.g.:

m geometric extremes;

m SPAR models.



Motivation - radial-angular multivariate extremes

More recently, there has been growing interest in radial-angular
approaches for multivariate extremes, e.g.:

m geometric extremes;
m SPAR models.

For inference and extrapolation, both require modelling or simulation of
an angular component.



Motivation - SPAR models (Mackay and Jonathan, 2023)

Consider a decomposition of the density of (R, W) via
frw (r, w) = fu (w) fryw (r|w).

Then, the multivariate extremes problem relies on estimation of an
angular density fyy and a model for the tail of R|W, i.e., for r > u(w)

frw(r,w) = Tfw(w)feep(r — u(w); o(w),{(w)),

where 7 = Pr(R > u(w)|W = w) is close to 0.
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Consider a decomposition of the density of (R, W) via
frw (r, w) = fu (w) fryw (r|w).

Then, the multivariate extremes problem relies on estimation of an
angular density fyy and a model for the tail of R|W, i.e., for r > u(w)

frw(r,w) = Tfw(w)feep(r — u(w); o(w),{(w)),

where 7 = Pr(R > u(w)|W = w) is close to 0.

m Extrapolation can be achieved by drawing from the angular
distribution, then simulating from the conditional GPD.



The role of deep learning

m Empirical approaches could be used to simulate from the angular
distribution.

m This becomes infeasible in higher dimensions.
m Parametric models could be used instead.

m These may lack the flexibility required to cover the range of possible
structures.



The role of deep learning

m Empirical approaches could be used to simulate from the angular
distribution.

m This becomes infeasible in higher dimensions.
m Parametric models could be used instead.

m These may lack the flexibility required to cover the range of possible
structures.

m Simulation using generative deep learning approaches could be used.

= This can estimate the angular distribution without specifying a
density.
m s less restrictive than relying on exact observations.



Our focus - simulating angular variables

m So, modelling and simulating angular data can play an important
role in multivariate extreme value analysis.

m This may also be useful in other settings where angular data arise.



Our focus - simulating angular variables

m So, modelling and simulating angular data can play an important
role in multivariate extreme value analysis.

m This may also be useful in other settings where angular data arise.

Our question:
Can generative deep learning methods be helpful for this task?



Spherical coordinates

We focus on the spherical coordinates @ = (©1,...,04_1)

©; = atan2 <\/Xd2 + Xg 12+ X227X1> ,

©, = atan2 (\/Xdz + Xd712 + -+ X32,X2> ,

©4_» = atan2 <\/Xd2 + Xd_lz,Xd_2> ,

©y_1 = atan2 (Xd, Xd—l) s

where ©1,...04_, € [0,7] and ©4_1 € (—m, 7]. (Blumenson, 1960)



Deep learning approaches

m Generative adversarial networks (GANs) - Goodfellow et al. (2014)

= Normalizing flows
m Neural spline flows (NFNSFs) - Durkan et al. (2019)

m Masked autoregressive flows (NFMAFs) - Papamakarios et al. (2017)

m Flow matching (FM) - Lipman et al. (2022)



Deep learning approaches

m Generative adversarial networks (GANs) - Goodfellow et al. (2014)

= Normalizing flows
m Neural spline flows (NFNSFs) - Durkan et al. (2019)

m Masked autoregressive flows (NFMAFs) - Papamakarios et al. (2017)

Flow matching (FM) - Lipman et al. (2022)

m Maximum mean discrepancy networks/Energy score networks



Adaptations for angular variables - GANs

m Feedforward neural networks for the generator and the discriminator.

m To ensure the spherical coordinates lie in the correct range, we
specify activation functions after the last generator layer as

1
fi+—m-——fori=1,...,d -2,
1+ex
Og_1 < m-tanhxy_1.

m Note: circular wrapping resulted in some training instabilities.



Adaptations for angular variables - NFs

m For both the NFNSF and NFMAF approaches, we use a
transformation of the form
O; 7 -®(x;)fori=1,...,d—2,
Gd_l — (Xd—l mod 27‘(‘) — .

m In these cases, the sigmoid has slower convergence at 0 and 1 than
the Gaussian CDF, which led to poor results near the endpoints of
[0,7].

m Circular wrapping for the final component worked well in this case.



Adaptations for angular variables - FM

m For flow matching, we don't need to map onto the angular space,
since flows can be defined directly on the sphere.



Baseline approach - mixture of vMF distributions

m The von Mises-Fisher (vMF) distribution has density
fonre (x| o 1) = ca(i)e™ %, x € $971,

for some concentration k > 0, mean direction p € S9-1 and
normalising constant cg(%).

m This is an angular extension of a multivariate Gaussian distribution.



Baseline approach - mixture of vMF distributions

m The von Mises-Fisher (vMF) distribution has density
vaF(X | H, H) = Cd(’i)en“Txa X € Sdil)

for some concentration k > 0, mean direction p € S9-1 and
normalising constant c4(k).

m This is an angular extension of a multivariate Gaussian distribution.

m A mixture of vMF distributions provides a flexible, parametric
approach to modelling angular data. This provides a baseline
method for comparing our deep learning approaches.



Simulation study - overview

To cover a wide range of examples, we consider the following options:
m dimensions d =5 and d = 10;
m datasets of size n = 1,000, n = 10,000 and n = 100, 000;
m light and heavy-tailed marginal distributions;

m five different dependence (copula) structures.



Simulation study - marginal models

To allow the potential for mass in all orthants, we choose common
marginal models with support on (—oo, 00).

m A standard Laplace distribution, having light upper and lower tails.

m A ‘double Pareto’ distribution, with heavy upper and lower tails.



Simulation study - marginal models
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Simulation study - copula models

We consider copulas with different types of dependence structure, taking
into account AD/Al and sparsity:

m a Gaussian copula (Al);
m a mixture of a Gaussian copula and a student-t copula (Al);
m a logistic copula (AD);

® a mixture distribution of a logistic copula and an independence
copula (more complex EDS);

m a ‘sparse’ Gaussian copula specified such that the variables are
clustered into groups of dependent variables with independence
between groups (Al).



Simulation study - hyperparameter optimisation

m Bespoke hyperparameter tuning for each individual setting is very
time consuming and therefore infeasible.

m We instead optimised the architectures for one specific case - the
sparse Gaussian copula with double Pareto margins - and using a
data example.



Simulation study - hyperparameter optimisation

m Bespoke hyperparameter tuning for each individual setting is very
time consuming and therefore infeasible.

m We instead optimised the architectures for one specific case - the
sparse Gaussian copula with double Pareto margins - and using a
data example.

m This seemed reasonable as long as the hyperparameters that were
selected allowed for some flexibility.

m Details of our suggested hyperparameters and architectures are in
the paper.



Simulation study - evaluation strategies

We consider a range of evaluation metrics to assess both marginal and
joint structure.

= Numerical metrics - circular CRPS
m Histograms and QQ-plots for spherical margins
m Scatterplots between pairs of spherical angles

m Orthant probability plots to assess full structure



Simulation study - general takeaways

m Using the cCRPS, the baseline approach gave the best results in the
majority of cases, but the results are very close.

m Seems difficult to distinguish between methods using cCRPS.

m Possibility that cCRPS focuses too much on the marginal fits.
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Simulation study - general takeaways

m Using the cCRPS, the baseline approach gave the best results in the
majority of cases, but the results are very close.

m Seems difficult to distinguish between methods using cCRPS.
m Possibility that cCRPS focuses too much on the marginal fits.

m The deep learning methods generally do well at recreating marginal
and dependence structures.

m There are some cases where the GAN doesn't do so well.

m But there is no clear overall “winner”.

m Marginal distributions do have an effect.

= In some cases, we do well for Laplace margins but poorly for the
equivalent double Pareto case.



Simulation study - some example results

Sparse Gaussian copula, Double Pareto margins, d = 10 and n = 100, 000
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Simulation study - some example results
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Simulation study - some example results

Orthant probabilty estimates

Orthant probabilty estimates

Orthant probability estimates

Orthant probability estimates
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Conclusions

m The flexibility and scalability offered by generative deep learning
approaches make them suitable candidates for multivariate angular
simulation.

m The baseline approach was generally good at capturing marginal
distributions, but struggled with some complex dependence
structures.

= No methods can be completely discounted, and there is no individual
‘best’ approach. So model checks and validation are key.



Avenues for further work

= Validation and model comparison is somewhat difficult.

m It would be useful to have more metrics for evaluation in
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Avenues for further work

= Validation and model comparison is somewhat difficult.

m It would be useful to have more metrics for evaluation in
angular/spherical contexts.

m Model rankings depend on the metric used.

m Hyperparameter tuning is time consuming.

m Theoretical developments or general guidelines related to this would
be helpful.

= Improvements in computational efficiency could improve the
feasibility of hyperparameter optimisation and uncertainty
assessment.



Thank you!

Based on the paper:

m Wessel, J. B., Murphy-Barltrop, C. J. R. and Simpson, E. S. (2025). A comparison of
generative deep learning methods for multivariate angular simulation. arXiv:2504.21505.

® Accompanying code available from https://github.com/callumbarltrop/DeGeMoH

Other references:
= Durkan, C., Bekasov, A., Murray, |., and Papamakarios, G. (2019). Neural spline flows.
NeurlPS.
m Goodfellow, I. J., et al. (2014). Generative adversarial nets. NeurlPS.

m Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and Le, M. (2022). Flow matching
for generative modeling. ICLR.

m Mackay, E. and Jonathan, P. (2023). Modelling multivariate extremes through
angular-radial decomposition of the density function. arXiv:2310.12711.

= Papamakarios, G., Pavlakou, T., and Murray, |. (2017). Masked autoregressive flow for
density estimation. NeurlPS.

Contact: emma.simpson@ucl.ac.uk


https://github.com/callumbarltrop/DeGeMoH
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