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Extremal temperature in the U.S.A

Annual maxima temperature data on a 5 km by 5 km grid from NOAA’s NClimGrid from 2023

• Modelling spatial datasets is computationally challenging, even with restrictive
model assumptions and in moderate dimension
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Simulation-based inference

L(θ0; Y) = f(Y; θ0) cannot be evaluated as a function of θ0; however, one
can simulate y ∼ f(Y; θ0) for any fixed θ0

• Approximate Bayesian computation (ABC)

• Simulation-based inference (SBI) / likelihood-free inference (LFI) using neural
networks

Key assumption: It is easy to simulate from f(Y; θ0)

This talk: When this assumption does not hold (e.g., models for spatial
extremes)
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Local models
Train a neural network on data simulated on small blocks of the domain
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Outcome

Computational efficiency:

• Scalable to very high dimensions even when fast simulation from the model is not
possible (only simulate on the small spatial domain and can be done in parallel)

• Once the neural network has been trained, estimation is independent of the
actual data size (fully amortised)
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Local model fitting using neural networks

• partition the spatial domain D into K disjoint regions D1, . . . , DK such that
∪K

k=1Dk = D and denote by dk the number of locations in Dk

• Fix a set of candidate parameter values {θt}T
t=1

• For each θt, simulate data Yt(Dk) independently on each block to generate
training data {θt, Yt(Dk)}

• Train a neural network ak using Yt(Dk) as the input and θt as the output for
each k = 1, . . . , K (in parallel across K computing nodes)

• Use the trained neural networks to estimate the value of θ0 for observed data
Y (Dk), k = 1, . . . , K, yielding K estimates θ̂k = ak{Âk; Y (Dk)}

Computationally amortised estimates of θ0 from each of the K blocks
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Neural network integration
Need to combine estimates from the K small blocks

• Use the mean estimator θ̂c = K−1 ∑K
k=1 θ̂k?

• Issue: Its variance may be inflated by the block estimates θ̂k

Var(θ̂m) = K−2(
∑K

k=1 Var(θ̂k) +
∑K

k,k′=1, k ̸=k′ Cov(θ̂k, θ̂k′))
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Challenge in developing a divide-and-conquer approach

How to combine the dependent parameter estimates from each block into a
global estimate

• Need calibrated uncertainty quantification (nominal quantiles match the
estimated quintiles)

• Most (pseudo)likelihood-based divide-and-conquer methods focus on prediction
due to this difficulty

• Account for the dependence Cov(θ̂k, θ̂k′) between θ̂k inherited from the
dependence between Dk

7



Recent work on divide-and-conquer approach

Hector and Reich (2023); Hector et al. (2024) designed a
divide-and-conquer approach for max-stable and Gaussian processes

• However, it remains computationally burdensome when the number of spatial
locations is large (rely on composite likelihood and full likelihood estimation,
respectively, within each block)

• Requires repeated, independent observations of the spatial domain to estimate
the dependence between estimators from each block

• We propose an improved weighted estimator that accounts for this
cross-covariance and thereby minimizes the variance of the resulting estimator
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Our proposed divide-and-conquer approach

• Replace the (pseudo)likelihood evaluation in each block with the black-box
parameter estimation

• Use the covariance between the B bootstrap replicates θ̂kb to estimate the
covariance between θ̂k

• Propose selecting a neural network from multiple trained networks to minimize
the influence of the amortisation gap on the downstream inference

• We illustrate this empirical strategy both without and with the
divide-and-conquer framework
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Neural network integration

The major difference between our proposal and previous work is that the
outcome process is only observed once, and bootstrapping is used to
quantify the dependence between θ̂k

• We sample independent replicates Yb(Dk), b = 1, . . . , B from f{y(Dk); θ̂m} and
generate bootstrap replicates in each block of the partitioned spatial domain
using θ̂kb = a{Âk; Yb(Dk)}

• The bootstrap replicates are only conditionally independent across k = 1, . . . , K
given Âk, Yb(Dk): the distribution from which Yb(Dk) are sampled depends on
θ̂m, which is shared across the blocks and whose variance captures dependence
between θ̂k

• The bootstrap replicates θ̂kb are marginally dependent with a dependence
structure that captures the dependence between block estimators θ̂k
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Neural network integration

We define a one-step meta-estimator that is asymptotically equivalent to
the optimal estimator as dk → ∞

θ̂c =
{∑K

k,k′=1(Ŵ opt)k,k′

}−1 ∑K
k,k′=1(Ŵ opt)k,k′ θ̂k′ ,

where W −1
opt is a bootstrap estimator of v(θ0) = Var(θ̂⊤

1 , . . . , θ̂
⊤
K)

• The estimator θ̂c can be computed in an accelerated distributed data network

• Amortised estimation: no new training needs to occur when new data Y (D′) are
collected so long as D′ can be partitioned into blocks of sizes in {d1, . . . , dK}

• B, the number of bootstrap samples can be made arbitrarily large, yielding an
estimator W opt(θ) that can be made arbitrarily precise for v(θ0)
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Can the uncertainty of θ̂c be quantified computationally
efficiently as well?

We assume that (θ̂c − θ0) is approximately Gaussian, with mean 0 and
variance j−1(θ0) = {

∑K
k,k′=1 v−1(θ0)}−1 and estimate j(θ0) with

Ĵopt =
∑K

k,k′=1(Ŵ opt)k,k′ ,

and construct large sample confidence intervals for

θ̂c ± zα/2
[
diag

{∑K
k,k′=1(Ŵ )k,k′

}−1]1/2

• Holds if θ̂k − θ̂
⋆

k = op(1) is a Gaussian process covariance model, where θ̂
⋆

k is the
maximum likelihood estimator based on Y (Dk)

• Empirical evidence shows that the distribution of θ̂c is Gaussian and centered at
θ0 with variance estimated by Ĵ

−1
opt when ak(A; ·) is sufficiently complex, and

dk, B are sufficiently large
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Simulations with Gaussian processes

Aim: Inference on θ0 = {log(τ2
0 ), log(ϕ2

0)} when d is large for a mean-zero
Gaussian process with covariance function
C{y(j), y(j′)} = τ2

0 exp(−∥j − j′∥2/ϕ2
0)

Spatial domain: Square gridded spatial domain of dimension d1/2 × d1/2.
Fix τ2

0 = 1 and ϕ2
0 = 3 and vary d ∈ {602, 902, 1202}

Training and validation data: Sequences of size 702 from log(ϕ2
0) − 0.5

to log(ϕ2
0) + 0.5 and log(τ2

0 ) − 0.5 to log(τ2
0 ) + 0.5

Local fit: Partition D into square blocks of dk = 302 locations each
(d = 602, 902, 1202 give K = 4, 9, 16 blocks)

Local estimation: Plug in Y (Dk) and estimate θ̂k in each block k

Integration: θ̂c is computed using B = 5,000 bootstrap replicates
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Local fit: What is the influence on inference of the stochastic
nature of gradient descent?

A CNN is trained 500 times with different seeds (all with the same
architecture and training and validation data)

minimum first tertile second tertile third tertile maximum

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

θ1

θ 2

Neural network estimates (triangles), maximum likelihood estimates (squares), true
values (crosses) and bootstrap replicates (grey dots) of θ0 based on the five
trained neural networks with minimum, first, second, third tertile and maximum
average validation loss (AVB).

We select the neural network with the smallest minimized validation loss
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Simulations with Gaussian processes

d parameter RMSE×100 ESE×100 ASE×100 CP (%)

602 ϕ2 7.81 (9.12,9.45) 7.80 (9.11,9.43) 7.76 93.4
τ2 7.55 (8.58,8.69) 7.54 (8.57,8.55) 7.09 92.4

902 ϕ2 5.70 5.67 5.19 92.6
τ2 5.23 5.20 4.74 92.2

1202 ϕ2 4.12 4.05 3.89 94.2
τ2 3.77 3.71 3.56 94.2

Metrics for the distributed neural estimator with MLE and Vecchia in parentheses

• Similar RMSE and ESE (negligible bias)

• 95% confidence intervals reach their nominal levels (Gaussian approximation
works well for inference)

• MLE and Vecchia have very similar RMSE and ASE

• The distributed approach is much faster than competitors (15.5 sec versus 960
and 1690 sec)
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Simulations with Brown-Resnick processes

• Brown-Resnick processes are a type of max-stable processes, which are used for
studying extreme events in space

• These processes are well-known for having full likelihoods that are
computationally intractable

• Challenge: Classical or Bayesian inference effectively impossible, even in small
dimension
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Simulations with Brown-Resnick processes

Aim: Inference on θ0 = {log(λ0), logit(ν0)} from a zero-mean Gaussian
process with semivariogram γ(h) = (∥h∥/λ)ν , λ > 0 and ν > 0

Spatial domain: Square gridded spatial domain of dimension d1/2 × d1/2.
Fix λ0 = 1 and ν0 = 1 and vary d ∈ {202, 302, 402, 502}

Training and validation data: Sequences of size 702 from log(λ0) − 0.5
to log(λ0) + 0.5 and logit(ν0) − 0.5 to logit(ν0) + 0.5

Local fit: Partition D into square blocks of dk = 302 locations each
(d = 602, 902, 1202 give K = 4, 9, 16 blocks)

Local estimation: Plug in Y (Dk) and estimate θ̂k in each block k

Integration: θ̂c is computed using B = 5,000 bootstrap replicates
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Simulations with Brown Resnick processes

d Parameter RMSE×100 ESE×100 ASE×100 CP (%)

202 θ1 10.2 (83.2) 10.1 (80.8) 10.10 94.40
θ2 13.6 (109) 13.5 (106) 12.70 94.40

302 θ1 6.5 (115) 6.43 (112) 6.75 95.20
θ2 8.64 (169) 8.65 (160) 8.46 94.60

402 θ1 5.3 (91.1) 5.26 (90.1) 5.06 94.30
θ2 6.57 (166) 6.55 (156) 6.34 94.30

502 θ1 4.23 (88.6) 4.17 (88.7) 4.05 95.00
θ2 5.19 (206) 5.19 (180) 5.07 93.80

Metrics for the distributed neural estimator with metrics of pairwise likelihood approximation in
parentheses

• Similar RMSE and ESE

• RMSE, ESE and ASE values tend to decrease as d increases

• Low bias independent of the window size

• The CP is below the nominal coverage for larger values of range (estimated CI’s
might be too narrow or slightly biased when the spatial dependence is stronger)
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United States temperature dataset

Annual maxima temperature data on a 5 km by 5 km grid from NOAA’s NClimGrid from 2023

• Monthly values in a 5 × 5 latitude/longitude grid for the Continental U.S. from
01 January 1895 to the present

• We compute yearly temperature maxima for the 129 years for a spatial region of
size d = 1802 = 32,400

• We fit a GEV distribution for each spatial location separately, which we then use
to transform annual maxima to a common unit Fréchet scale
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Empirical bivariate extremal coefficients

• Empirical values from the NOAA data
(grey dots) computed on blocks of
size d = 302 (grey dots) and
integrated neural network-based
approach (black dots)

• Highly spatially dependent, with
maxima that are very correlated even
at larger distances

• The model estimates are close to the
empirical estimates at all distances
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Estimated 95% confidence intervals
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95% CIs of the combined weighted estimator θ̂c of the range parameter (top) and
smoothness (bottom). Black dots indicate the combined weighted estimator
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Summary

Local models combined with neural network are quick and easy to fit even
when simulation from the model is not straightforward

Utilizing bootstrapping samples from the neural network estimator in the
divide-and-conquer enables inference in very large areas across varying
number of spatial domains

Much of the potential of neural amortized inference is yet to be realized

... a lot of work (and simulations) still needed
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