GPDFlow: Generative Multivariate Threshold Exceedance Modeling via Normalizing Flows

Chenglei Hu and Daniela Castro-Camilo

University of Glasgow

c.hu.2@research.gla.ac.uk

Generative AI Modelling for Extreme Events - Workshop

14 June 2025

Challenges in Multivariate Extreme Exceedance Modelling

- Within the asymptotic dependence (AD) regime, the limiting dependence structure is NOT uniquely defined, leading to infinite parameterizations.
- Few tractable models for complex tail dependence in multivariate extremes.
- Propagation of Error in the two-step marginal and dependence estimation.
- Classical multivariate EVT typically targets joint extremes, but real-world applications often involve partial extremes, e.g.:

$$\mathbb{P}(X_1 < q_{1,0.5}, X_2 > q_{2,0.99})$$

Generative models are powerful tools for approximating distributions, but they
often exhibit poor performance on heavy-tailed regions.

Goals of Our Work

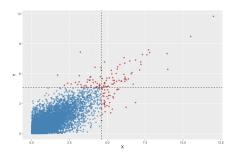
- Address the infinite parameterisations of the dependence function in the AD setting.
- Develop a likelihood-based generative model that
 - jointly estimates marginal distributions and tail dependence
 - 2 naturally accommodates partial extreme events, while retaining interpretable parameters.

Our Approach

Combine the **Multivariate Generalised Pareto Distribution (mGPD)** with generative models — specifically, **normalising flows**.

Threshold Exceedance Definitions

We focus on the threshold exceedance setting where at least one component exceeds its threshold.



This "reversed L-shaped" support may seem unusual, but it's highly practical for computing probabilities such as:

- $P(X_1 > x_1, X_2 > x_2)$
- $\blacksquare P(X_1 < u_1, X_2 > x_2)$

Multivariate Generalized Pareto Distribution

Assume $Y \in \mathbb{R}^d$ has a joint distribution function F in the max-domain of attraction of a non-degenerate limit distribution G.

That is , there exists sequences $\pmb{a}_n \in (0,\infty)^d$ and $\pmb{b}_n \in \mathbb{R}^d$ such that

$$\lim_{n\to\infty} n\{1-F(\boldsymbol{a}_n\boldsymbol{y}+\boldsymbol{b}_n)\}=-\log G(\boldsymbol{y}).$$

Then, for a high threshold vector u, the conditional excess vector $Y - u | Y \le u$ converges to the multivariate generalised Pareto distribution (mGPD), with cdf

$$H(\mathbf{x}) = \frac{1}{\log G(\mathbf{0})} \log \frac{G(\mathbf{x} \wedge \mathbf{0})}{G(\mathbf{x})},$$

where \wedge denotes the elementwise minimum.

Some appealing properties of the mGPD (Kiriliouk et al., 2019):

Conditional Margins are Univariate GPDs:

$$\mathbb{P}(X_j > x_j | X_j > 0) = \frac{1 - H_j(x_j)}{1 - H_j(0)} = \left(1 + \frac{\gamma_j x_j}{\sigma_j}\right)^{-1/\gamma_j}, \quad x_j > 0$$

Threshold Stability: Increasing the threshold by ω yields an mGPD that only differs in marginal scale parameters, with new scale as $\sigma_{\text{new}} = \sigma + \gamma \omega$

Given that the conditional margins of the mGPD is univariate GPD, we can standardise the mGPD by

$$oldsymbol{Z} = g_{ ext{std}}(oldsymbol{X}; oldsymbol{\sigma}, oldsymbol{\gamma}) = \mathbb{1}\{oldsymbol{\gamma}
eq oldsymbol{0}\} rac{1}{oldsymbol{\gamma}} \log \left(rac{oldsymbol{\gamma} oldsymbol{X}}{oldsymbol{\sigma}} + 1
ight) + \mathbb{1}\{oldsymbol{\gamma} = oldsymbol{0}\} rac{oldsymbol{X}}{oldsymbol{\sigma}},$$

so that $\gamma = \mathbf{0}$, and $\mathbb{P}(Z_j > z_j | Z_j > 0) = \exp(-z_j)$ for $z_j > 0$.

We say that Z follows a standardised mGPD and denote its density as h(z).

- To derive the density h(z), we leverage the stochastic representation of the mGPD.
- According to Rootzén et al. (2018), any random variable Z follows a standardized mGPD can be expressed as

$$\mathbf{Z} = \mathbf{E} + \mathbf{T} - \max(\mathbf{T})$$

- Here, $E \sim \text{Exp}(1)$, T is a d-dimensional random vector independent to E and satisfying two weak conditions

 - $P(\max(\mathbf{T}) > -\infty) = 1$

Using the stochastic representation $Z = E + T - \max(T)$, the density of the standardised mGPD is:

$$\textit{h}(\textbf{\textit{z}}) = \frac{\mathbb{1}\{\max(\textbf{\textit{z}}>0)\}}{\exp\{\max(\textbf{\textit{z}})\}} \int_{-\infty}^{\infty} \textit{f}_{\textbf{\textit{T}}}(\textbf{\textit{z}}+\textbf{\textit{s}}) \mathrm{d}\textbf{\textit{s}},$$

where f_T is the density of T.

This formulation admits **infinitely many parameterisations** via different choices of T.

Existing approaches only explore T with closed-form f_T (e.g., independent Gumbel, reverse-Gumbel, reverse exponential).

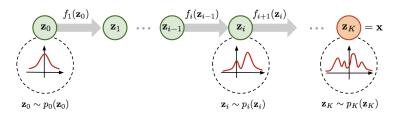
Our Proposal: GPDflow

Use normalising flows to model T flexibly and efficiently!

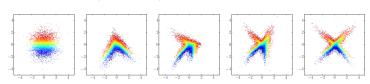
Normalising Flows

Normalising Flows transform a simple base distribution into a complex target distribution using a sequence of invertible, differentiable mappings.

Core idea: Change of variables in probability density functions!



Two-dimensional example from Papamakarios et al. (2021):

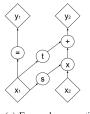


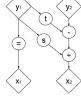
Normalising Flows

- For any well-behaved target distribution, there exists an invertible and differentiable transformation from a simple base (e.g., Uniform or Gaussian; Papamakarios et al. 2021).
- Neural networks are flexible and differentiable, but not naturally invertible.
- Normalising flows overcome this by carefully designing network architectures to ensure invertibility and efficient Jacobian computation.
- Jacobian of the transformation should also be easy to compute.
- We use Real NVP, a simple but powerful flow model that constructs the mapping by affine transformations.

Normalising Flows: Real NVP

Real NVP (Dinh et al., 2017) uses affine coupling layers to construct invertible transformations.





(a) Forward propagation

(b) Inverse propagation

Mathematically,

$$y_{1:d} = x_{1:d}$$

$$y_{d+1:D} = x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d}),$$

where $s(\cdot)$ and $t(\cdot)$ are scale and shift functions, parameterised by neural networks (e.g. MLPs).

An appealing feature of such architecture is that the Jacobian of such a transformation is **lower-triangular**:

$$\frac{\partial y}{\partial x^T} = \begin{bmatrix} \mathbb{I}_d & 0\\ \frac{\partial y_{d+1:D}}{\partial x_{1:d}^T} & \mathsf{diag}\left(\mathsf{exp}\left[s\left(x_{1:d}\right)\right]\right) \end{bmatrix}.$$

Key implications:

- Determinant is simply $\prod \exp(s_j) = \exp(\sum s_j)$
- \blacksquare We can design s and t as complex networks—without compromising tractability.

Normalising Flows: Inference

Inference with normalising flows closely resembles standard maximum likelihood estimation

Let θ denote the flow parameters (e.g., neural network weights). The density of the transformed variable is:

$$f_{\mathbf{Y}}(\mathbf{y} \mid \mathbf{\theta}) = f_{\mathbf{U}}(\mathbf{u}) \cdot \left| \det J_{g}(\mathbf{u} \mid \mathbf{\theta}) \right|^{-1}, \quad \mathbf{u} = g^{-1}(\mathbf{y} \mid \mathbf{\theta})$$

Why this matters:

- We obtain the exact likelihood, not just an approximation.
- Enables principled training via maximum likelihood.
- A key feature over GANs or Diffusion Models!

Key Idea: Represent the latent variable T in the stochastic representation of the standardised mGPD using a normalising flow (Real NVP).

Formally, GPDFlow is a d-dimensional distribution with density

$$f(\boldsymbol{x}; \boldsymbol{\sigma}, \gamma, \boldsymbol{\theta}) = \frac{\mathbb{1}\{\max(\boldsymbol{z}) > 0\}}{\exp\{\max(\boldsymbol{z})\}} \int_{-\infty}^{\infty} f_{\boldsymbol{y}}\left(g^{-1}(\boldsymbol{z} + \boldsymbol{s}; \boldsymbol{\theta})\right) |\det J_{g}(\boldsymbol{z} + \boldsymbol{s}; \boldsymbol{\theta})|^{-1} d\boldsymbol{s}$$

$$\times \prod_{i=1}^{d} \frac{1}{\sigma_{i} + \gamma_{i} X_{i}}$$

where $\mathbf{z} = g_{\text{std}}(\mathbf{x})$ is the standardized version.

Two Perspectives:

- **Statistical:** GPDFlow is an mGPD with highly flexible dependence structure.
- **Machine Learning:** A sample from *f* is generated by:

$$extbf{ extit{X}} = g_{ ext{std}} \circ g_{ ext{mGPD}} \circ g(extbf{ extit{U}})$$

where $g_{\text{mGPD}}(\boldsymbol{T}) = E + \boldsymbol{T} - \max(\boldsymbol{T})$, and $E \sim \text{Exp}(1)$.

Advantage of the GPDFlow structure

- Enhance the flexibility of the tail dependence
- 2 Avoid Real NVP directly modelling marginal tail, where Real NVP generally struggles to estimate tail heaviness accurately
- 3 Jointly estimate the margins and dependence
- 4 Full likelihood inference instead of censored likelihood, being able to model partial extremes.

Let $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ be observed threshold exceedances. The log-likelihood is:

$$\begin{split} \ell(\boldsymbol{\sigma}, \boldsymbol{\gamma}, \boldsymbol{\theta}) &= \sum_{i=1}^n \Bigg\{ \log \left[\int_{-\infty}^{\infty} f_{\boldsymbol{U}} \left(\boldsymbol{g}^{-1}(\boldsymbol{z}_i + \boldsymbol{s}; \boldsymbol{\theta}) \right) |\det J_g(\boldsymbol{z}_i + \boldsymbol{s}; \boldsymbol{\theta})|^{-1} \, d\boldsymbol{s} \right] \\ &+ \log \mathbb{1} \{ \max(\boldsymbol{z}_i) > 0 \} - \max(\boldsymbol{z}_i) - \sum_{j=1}^d \log(\sigma_j + \gamma_j \boldsymbol{x}_{ij}) \Bigg\}, \end{split}$$

where $\mathbf{z}_i = g_{\text{std}}(\mathbf{x}_i)$.

Note: Although z_i is d-dimensional, the integral is only over a scalar variable s.

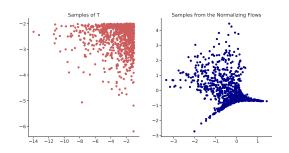
We update (θ, σ, γ) by maximize the **full likelihood** $\ell(\sigma, \gamma, \theta)$.

Identifiability of T

Recall the stochastic representation:

$$Z = E + T - \max(T)$$

For any *d*-dimensional random vector $\mathbf{R} = (R, \dots, R)$, \mathbf{T} and $\mathbf{T} + \mathbf{R}$ will always lead to same \mathbf{Z} .



 ${\bf S}={\bf T}-\max{(T)}$ is identifiable, but is applying $\max{(S)}=0$ is difficult in normalising flows.

Fortunately, the identification issue does NOT affect the tail inference.

General idea: use the threshold-stability property

We select the threshold q^* based on stability of tail dependence measures:

Compute

$$\chi_{1:d}(q) = \frac{\mathbb{P}\{\bigcap_{j=1}^d \{X_j > F_j^{-1}(q)\}\}}{1-q}, \quad q \in (0,1) \leftarrow \text{ joint exceedance measure },$$

$$\omega_{1:d}(q) = \frac{\mathbb{P}\{\bigcup_{j=1}^d \{X_j > F_j^{-1}(q)\}\}}{1-q}, \quad q \in (0,1) \leftarrow \text{ union exceedance measure}.$$

- Plot empirical $\hat{\chi}_{1:d}(q)$ and $\hat{\omega}_{1:d}(q)$
- Identify where both stabilise $o q^* = \max\{q_\chi, q_\omega\}$
- Final threshold: $(F_1^{-1}(q^*), \dots, F_d^{-1}(q^*))$

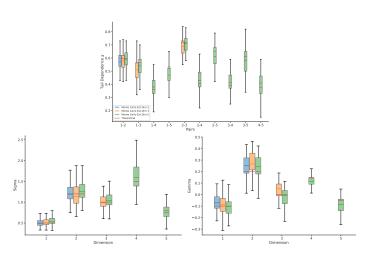
This balances bias-variance trade-off and captures both joint and partial extremes reliably.

Simulation 1: Parameter Estimation Accuracy

We simulate from a regular parametric multivariate GPD (mGPD), and assess whether GPDFlow can recover:

Pairwise tail dependence (χ)

Marginal parameters (σ and γ)



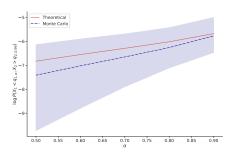
Simulation 2: Partial Exceedance Probability

We test GPDFlow's ability to estimate partial exceedance probabilities.

Setup:

- 1200 samples from a bivariate Gumbel copula ($\theta = 1.3$)
- Margins: Gaussian with $(\mu_1, s_1) = (1,3)$ and $(\mu_2, s_2) = (2,5)$
- Threshold: 0.95-quantile for each margin

Examined metric: $\mathbb{P}(X_1 < q_{1,\alpha}, X_2 > q_{2,0.99})$

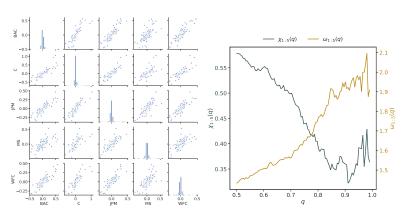


Application: Systemic Financial Risk

We analyse the 5-day negative log returns of 5 major US banks (2005–2025).

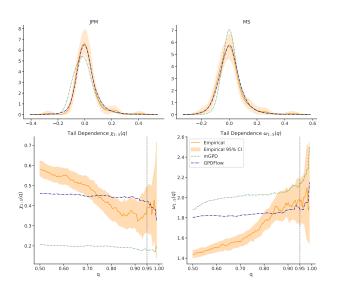
Risk measure: Conditional Value-at-Risk (CoVaR)

$$CoVaR_{\alpha,\beta}(Y \mid X) = VaR_{\alpha}(Y \mid X \ge VaR_{\beta}(X))$$



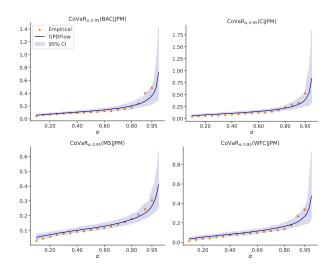
Application: Model Comparison

We compare GPDFlow with the best parametric mGPD (selected via AIC).



Application: CoVaR Estimation

We condition on JPM having a negative log return above its 0.95 quantile.



Limitations

While GPDFlow provides a flexible and powerful framework for modelling multivariate threshold exceedances, it is not without limitations:

- Assumption of asymptotic dependence: GPDFlow is based on max-domain attraction, which may not be suitable for asymptotically independent data.
- Lack of uncertainty quantification: Estimating confidence intervals or posterior distributions for model parameters is challenging.
- Training instability with disparate marginals: When marginal scales differ substantially, a two-step estimation procedure is often required for stability.

Reference

- Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using real NVP. In International Conference on Learning Representations.
- Kiriliouk, A., Rootzén, H., Segers, J., and Wadsworth, J. L. (2019). Peaks over thresholds modeling with multivariate generalized pareto distributions. *Technometrics*, 61(1):123–135.
- Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. (2021). Normalizing flows for probabilistic modeling and inference. *Journal of Machine Learning Research*, 22(57):1–64.
- Rootzén, H., Segers, J., and Wadsworth, J. L. (2018). Multivariate generalized pareto distributions: Parametrizations, representations, and properties. *Journal of Multivariate Analysis*, 165:117–131.

Scan here for full manuscript if you are interested in our work!

