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Overview

Challenges in Multivariate Extreme Exceedance Modelling

Within the asymptotic dependence (AD) regime, the limiting dependence struc-
ture is NOT uniquely defined, leading to infinite parameterizations.

Few tractable models for complex tail dependence in multivariate extremes.

Propagation of Error in the two-step marginal and dependence estimation.

Classical multivariate EVT typically targets joint extremes, but real-world ap-
plications often involve partial extremes, e.g.:

P(X1 < q1,0.5, X2 > q2,0.99)

Generative models are powerful tools for approximating distributions, but they
often exhibit poor performance on heavy-tailed regions.
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Overview

Goals of Our Work

Address the infinite parameterisations of the dependence function in the
AD setting.

Develop a likelihood-based generative model that

1 jointly estimates marginal distributions and tail dependence

2 naturally accommodates partial extreme events, while retaining interpretable
parameters.

Our Approach

Combine the Multivariate Generalised Pareto Distribution (mGPD) with gene-
rative models — specifically, normalising flows.
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Threshold Exceedance Definitions

We focus on the threshold exceedance setting where at least one component
exceeds its threshold.

This “reversed L-shaped” support may seem unusual, but it’s highly practical for
computing probabilities such as:

P(X1 > x1,X2 > x2)

P(X1 < u1,X2 > x2)
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Multivariate Generalized Pareto Distribution

Assume Y ∈ Rd has a joint distribution function F in the max-domain of attraction
of a non-degenerate limit distribution G.

That is , there exists sequences an ∈ (0,∞)d and bn ∈ Rd such that

lim
n→∞

n{1− F (any + bn)} = − logG(y).

Then, for a high threshold vector u, the conditional excess vector Y − u|Y ≰ u
converges to the multivariate generalised Pareto distribution (mGPD), with cdf

H(x) =
1

logG(0)
log

G(x ∧ 0)
G(x)

,

where ∧ denotes the elementwise minimum.
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Multivariate Generalized Pareto Distribution

Some appealing properties of the mGPD (Kiriliouk et al., 2019):

1 Conditional Margins are Univariate GPDs:

P(Xj > xj |Xj > 0) =
1− Hj(xj)

1− Hj(0)
=

(
1 +

γjxj

σj

)−1/γj

, xj > 0

2 Threshold Stability: Increasing the threshold by ω yields an mGPD that only
differs in marginal scale parameters, with new scale as σnew = σ + γω

Given that the conditional margins of the mGPD is univariate GPD, we can stan-
dardise the mGPD by

Z = gstd(X ;σ,γ) = 1{γ ̸= 0} 1
γ
log

(
γX
σ

+ 1
)
+ 1{γ = 0}X

σ
,

so that γ = 0, and P(Zj > zj |Zj > 0) = exp(−zj) for zj > 0.

We say that Z follows a standardised mGPD and denote its density as h(z).
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Standardised mGPD

To derive the density h(z), we leverage the stochastic representation of the
mGPD.

According to Rootzén et al. (2018), any random variable Z follows a standardi-
zed mGPD can be expressed as

Z = E + T −max(T )

Here, E ∼ Exp(1), T is a d-dimensional random vector independent to E and
satisfying two weak conditions

1 P(Tj > −∞) > 0

2 P(max(T ) > −∞) = 1
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Standardised mGPD

Using the stochastic representation Z = E + T − max(T ), the density of the
standardised mGPD is:

h(z) =
1{max(z > 0)}
exp{max (z)}

∫ ∞

−∞
fT (z + s)ds,

where fT is the density of T .

This formulation admits infinitely many parameterisations via different choices
of T .

Existing approaches only explore T with closed-form fT (e.g., independent Gum-
bel, reverse-Gumbel, reverse exponential).

Our Proposal: GPDflow
Use normalising flows to model T flexibly and efficiently!
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Normalising Flows

Normalising Flows transform a simple base distribution into a complex target
distribution using a sequence of invertible, differentiable mappings.

Core idea: Change of variables in probability density functions!

Two-dimensional example from Papamakarios et al. (2021):
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Normalising Flows

For any well-behaved target distribution, there exists an invertible and diffe-
rentiable transformation from a simple base (e.g., Uniform or Gaussian; Papa-
makarios et al. 2021).

Neural networks are flexible and differentiable, but not naturally invertible.

Normalising flows overcome this by carefully designing network architectu-
res to ensure invertibility and efficient Jacobian computation.

Jacobian of the transformation should also be easy to compute.

We use Real NVP, a simple but powerful flow model that constructs the map-
ping by affine transformations.
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Normalising Flows: Real NVP

Real NVP (Dinh et al., 2017) uses affine coupling layers to construct invertible
transformations.

Mathematically,
y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d ) ,

where s(·) and t(·) are scale and shift functions, parameterised by neural networks

(e.g. MLPs).
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Jacobian of Real NVP

An appealing feature of such architecture is that the Jacobian of such a transfor-
mation is lower-triangular:

∂y
∂xT =

 Id 0
∂yd+1:D
∂xT

1:d
diag (exp [s (x1:d )])

 .

Key implications:

Determinant is simply
∏

exp(sj) = exp (
∑

sj)

We can design s and t as complex networks—without compromising tractability.
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Normalising Flows: Inference

Inference with normalising flows closely resembles standard maximum like-
lihood estimation

Let θ denote the flow parameters (e.g., neural network weights). The density of
the transformed variable is:

fY (y | θ) = fU(u) · |det Jg(u | θ)|−1 , u = g−1(y | θ)

Why this matters:

We obtain the exact likelihood, not just an approximation.

Enables principled training via maximum likelihood.

A key feature over GANs or Diffusion Models!
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GPDFlow

Key Idea: Represent the latent variable T in the stochastic representation of the
standardised mGPD using a normalising flow (Real NVP).

Formally, GPDFlow is a d-dimensional distribution with density

f (x ;σ,γ,θ) =
1{max(z) > 0}
exp{max(z)}

∫ ∞

−∞
fU

(
g−1(z + s;θ)

)
|det Jg(z + s;θ)|−1 ds

×
d∏

j=1

1
σj + γjxj

where z = gstd(x) is the standardized version.

Two Perspectives:

1 Statistical: GPDFlow is an mGPD with highly flexible dependence structure.

2 Machine Learning: A sample from f is generated by:

X = gstd ◦ gmGPD ◦ g(U)

where gmGPD(T ) = E + T −max(T ), and E ∼ Exp(1).
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GPDFlow

Advantage of the GPDFlow structure

1 Enhance the flexibility of the tail dependence

2 Avoid Real NVP directly modelling marginal tail, where Real NVP generally
struggles to estimate tail heaviness accurately

3 Jointly estimate the margins and dependence

4 Full likelihood inference instead of censored likelihood, being able to model
partial extremes.
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Inference for GPDFlow

Let (x1, . . . , xn) be observed threshold exceedances. The log-likelihood is:

ℓ(σ,γ,θ) =
n∑

i=1

{
log

[∫ ∞

−∞
fU

(
g−1(z i + s;θ)

)
|det Jg(z i + s;θ)|−1 ds

]

+ log 1{max(z i) > 0} −max(z i)−
d∑

j=1

log(σj + γjxij)

}
,

where z i = gstd(x i).

Note: Although z i is d-dimensional, the integral is only over a scalar variable s.

We update (θ,σ,γ) by maximize the full likelihood ℓ(σ,γ,θ).
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Identifiability of T

Recall the stochastic representation:

Z = E + T −max(T )

For any d-dimensional random vector R = (R, · · · ,R), T and T + R will always
lead to same Z .
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Samples from the Normalizing Flows

S = T −max (T ) is identifiable, but is applying max (S) = 0 is difficult in normali-
sing flows.

Fortunately, the identification issue does NOT affect the tail inference.
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Threshold Selection in GPDFlow

General idea: use the threshold-stability property

We select the threshold q∗ based on stability of tail dependence measures:

Compute

χ1:d(q) =
P{

⋂d
j=1{Xj > F−1

j (q)}}
1− q

, q ∈ (0, 1)← joint exceedance measure ,

ω1:d(q) =
P{

⋃d
j=1{Xj > F−1

j (q)}}
1− q

, q ∈ (0, 1)← union exceedance measure.

Plot empirical χ̂1:d (q) and ω̂1:d (q)

Identify where both stabilise→ q∗ = max{qχ, qω}
Final threshold: (F−1

1 (q∗), . . . ,F−1
d (q∗))

This balances bias–variance trade-off and captures both joint and partial extremes
reliably.
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Simulation 1: Parameter Estimation Accuracy

We simulate from a regular parametric multivariate GPD (mGPD), and assess
whether GPDFlow can recover:

Pairwise tail dependence (χ) Marginal parameters (σ and γ)
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Simulation 2: Partial Exceedance Probability

We test GPDFlow’s ability to estimate partial exceedance probabilities.

Setup:

1200 samples from a bivariate Gumbel copula (θ = 1.3)

Margins: Gaussian with (µ1, s1) = (1, 3) and (µ2, s2) = (2, 5)

Threshold: 0.95-quantile for each margin

Examined metric: P(X1 < q1,α,X2 > q2,0.99)
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Application: Systemic Financial Risk

We analyse the 5-day negative log returns of 5 major US banks (2005–2025).

Risk measure: Conditional Value-at-Risk (CoVaR)

CoVaRα,β(Y | X ) = VaRα (Y | X ≥ VaRβ(X ))

0.5

0.0

0.5

BA
C

0.5

0.0

0.5

1.0

C

0.25

0.00

0.25

0.50

JP
M

0.0

0.5

M
S

0.5 0.0 0.5
BAC

0.25

0.00

0.25

0.50

W
FC

0 1
C

0.0 0.5
JPM

0.0 0.5
MS

0.0 0.5
WFC

0.5 0.6 0.7 0.8 0.9 1.0
q

0.35

0.40

0.45

0.50

0.55

1:
5(

q)

1 : 5(q) 1 : 5(q)

1.5

1.6

1.7

1.8

1.9

2.0

2.1

1:
5(

q)

Chenglei Hu GPDFlow 21 / 25



Application: Model Comparison

We compare GPDFlow with the best parametric mGPD (selected via AIC).
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Application: CoVaR Estimation

We condition on JPM having a negative log return above its 0.95 quantile.
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Limitations

While GPDFlow provides a flexible and powerful framework for modelling multiva-
riate threshold exceedances, it is not without limitations:

Assumption of asymptotic dependence: GPDFlow is based on max-domain
attraction, which may not be suitable for asymptotically independent data.

Lack of uncertainty quantification: Estimating confidence intervals or poste-
rior distributions for model parameters is challenging.

Training instability with disparate marginals: When marginal scales differ
substantially, a two-step estimation procedure is often required for stability.
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