
Exploring Transformer-Based Models for

Cascading Extremes

Clemente Ferrer
clemente.ferrer@usm.cl

Department of Mathematics
Universidad Técnica Federico Santa Maŕıa

Joint work with Miguel de Carvalho & Ronny Vallejos

Workshop on Generative AI for Extreme Events

Edinburgh, UK

June 13, 2025

1 / 21



Literature Review

During this talk I will cover the following topics:

▶ Why use Transformers?

▶ A Literature Review on Transformers.

▶ Transformer in Statistics.

▶ Large Language Models and Generative
Pre-trained Transformers (GPT).

▶ Ideas on Transformers for Chained
Extremes.

Most of the figures and ideas in this
talk were taken from the book by
Bishop and Bishop (2024).

2 / 21



Literature Review

During this talk I will cover the following topics:

▶ Why use Transformers?

▶ A Literature Review on Transformers.

▶ Transformer in Statistics.

▶ Large Language Models and Generative
Pre-trained Transformers (GPT).

▶ Ideas on Transformers for Chained
Extremes.

Most of the figures and ideas in this
talk were taken from the book by
Bishop and Bishop (2024).

2 / 21



Literature Review

During this talk I will cover the following topics:

▶ Why use Transformers?

▶ A Literature Review on Transformers.

▶ Transformer in Statistics.

▶ Large Language Models and Generative
Pre-trained Transformers (GPT).

▶ Ideas on Transformers for Chained
Extremes.

Most of the figures and ideas in this
talk were taken from the book by
Bishop and Bishop (2024).

2 / 21



Literature Review

During this talk I will cover the following topics:

▶ Why use Transformers?

▶ A Literature Review on Transformers.

▶ Transformer in Statistics.

▶ Large Language Models and Generative
Pre-trained Transformers (GPT).

▶ Ideas on Transformers for Chained
Extremes.

Most of the figures and ideas in this
talk were taken from the book by
Bishop and Bishop (2024).

2 / 21



Literature Review

During this talk I will cover the following topics:

▶ Why use Transformers?

▶ A Literature Review on Transformers.

▶ Transformer in Statistics.

▶ Large Language Models and Generative
Pre-trained Transformers (GPT).

▶ Ideas on Transformers for Chained
Extremes.

Most of the figures and ideas in this
talk were taken from the book by
Bishop and Bishop (2024).

2 / 21



Literature Review

During this talk I will cover the following topics:

▶ Why use Transformers?

▶ A Literature Review on Transformers.

▶ Transformer in Statistics.

▶ Large Language Models and Generative
Pre-trained Transformers (GPT).

▶ Ideas on Transformers for Chained
Extremes.

Most of the figures and ideas in this
talk were taken from the book by
Bishop and Bishop (2024).

2 / 21



Why use Transformers?

’Transformers’

0

10000

20000

30000

40000

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year

# 
R

el
at

ed
 w

or
k

0

10000

20000

30000

40000

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year

# 
R

el
at

ed
 w

or
k

Figure: Number of works (articles, preprints, book chapter) referring to ’Transformers’
since 2015 (Source: OpenAlex.org).

3 / 21



Literature Review

Suppose N tokens
x1, . . . ,xN ← Input data.

where xn = (xn1, . . . , xnD)T ∈ RD, n = 1, . . . , N . The elements of the tokens are
called features.

Figure: The structure of the data matrix X, of dimension N ×D, in which row n
represents the transposed data vector xT

n .

4 / 21



Literature Review

Suppose N tokens
x1, . . . ,xN ← Input data.

where xn = (xn1, . . . , xnD)T ∈ RD, n = 1, . . . , N . The elements of the tokens are
called features.

Figure: The structure of the data matrix X, of dimension N ×D, in which row n
represents the transposed data vector xT

n .

4 / 21



Literature Review

Goal

Define a transformation from tokens x1, . . . ,xN to output embeddings y1, . . . ,yN ,
where each yn is a weighted combination of ALL xm, with weights reflecting the
relevance of xm to yn.

Proposal

yn =
N∑

m=1

αnmxm,

where αnm ≥ 0 are attention weights such that
∑N

m=1 αnm = 1.

First approach

anm =
exp(xT

nxm)∑N
m′=1 exp(x

T
nxm′ )

← Softmax.

Using matrix notation

Y = Softmax(XXT)X ← Self-Attention.

5 / 21



Literature Review

Goal

Define a transformation from tokens x1, . . . ,xN to output embeddings y1, . . . ,yN ,
where each yn is a weighted combination of ALL xm, with weights reflecting the
relevance of xm to yn.

Proposal

yn =
N∑

m=1

αnmxm,

where αnm ≥ 0 are attention weights such that
∑N

m=1 αnm = 1.

First approach

anm =
exp(xT

nxm)∑N
m′=1 exp(x

T
nxm′ )

← Softmax.

Using matrix notation

Y = Softmax(XXT)X ← Self-Attention.

5 / 21



Literature Review

Goal

Define a transformation from tokens x1, . . . ,xN to output embeddings y1, . . . ,yN ,
where each yn is a weighted combination of ALL xm, with weights reflecting the
relevance of xm to yn.

Proposal

yn =
N∑

m=1

αnmxm,

where αnm ≥ 0 are attention weights such that
∑N

m=1 αnm = 1.

First approach

anm =
exp(xT

nxm)∑N
m′=1 exp(x

T
nxm′ )

← Softmax.

Using matrix notation

Y = Softmax(XXT)X ← Self-Attention.

5 / 21



Literature Review

Goal

Define a transformation from tokens x1, . . . ,xN to output embeddings y1, . . . ,yN ,
where each yn is a weighted combination of ALL xm, with weights reflecting the
relevance of xm to yn.

Proposal

yn =
N∑

m=1

αnmxm,

where αnm ≥ 0 are attention weights such that
∑N

m=1 αnm = 1.

First approach

anm =
exp(xT

nxm)∑N
m′=1 exp(x

T
nxm′ )

← Softmax.

Using matrix notation

Y = Softmax(XXT)X ← Self-Attention.

5 / 21



Literature Review

Goal

Define a transformation from tokens x1, . . . ,xN to output embeddings y1, . . . ,yN ,
where each yn is a weighted combination of ALL xm, with weights reflecting the
relevance of xm to yn.

Proposal

yn =
N∑

m=1

αnmxm,

where αnm ≥ 0 are attention weights such that
∑N

m=1 αnm = 1.

First approach

anm =
exp(xT

nxm)∑N
m′=1 exp(x

T
nxm′ )

← Softmax.

Using matrix notation

Y = Softmax(XXT)X ← Self-Attention.

5 / 21



Literature Review

Limitation

The mapping {xn} 7→ {yn} lacks learnable parameters and thus cannot adapt to
data. Additionally, all features in each xn contribute equally to attention weights,
limiting the model’s ability to focus selectively on informative features.

Partial solution

Define
X̃ = XU, U ∈ RD×D,

where U is learnable, analogous to a ’layer’ in standard neural networks. Then

Y = Softmax(XUUTXT)XU.

Still a problem

Although this has much more flexibility, the matrix

XUUTXT

is symmetric, whereas we would like the attention mechanism to support asymmetry.

6 / 21



Literature Review

Limitation

The mapping {xn} 7→ {yn} lacks learnable parameters and thus cannot adapt to
data. Additionally, all features in each xn contribute equally to attention weights,
limiting the model’s ability to focus selectively on informative features.

Partial solution

Define
X̃ = XU, U ∈ RD×D,

where U is learnable, analogous to a ’layer’ in standard neural networks. Then

Y = Softmax(XUUTXT)XU.

Still a problem

Although this has much more flexibility, the matrix

XUUTXT

is symmetric, whereas we would like the attention mechanism to support asymmetry.

6 / 21



Literature Review

Limitation

The mapping {xn} 7→ {yn} lacks learnable parameters and thus cannot adapt to
data. Additionally, all features in each xn contribute equally to attention weights,
limiting the model’s ability to focus selectively on informative features.

Partial solution

Define
X̃ = XU, U ∈ RD×D,

where U is learnable, analogous to a ’layer’ in standard neural networks. Then

Y = Softmax(XUUTXT)XU.

Still a problem

Although this has much more flexibility, the matrix

XUUTXT

is symmetric, whereas we would like the attention mechanism to support asymmetry.

6 / 21



Literature Review

Limitation

The mapping {xn} 7→ {yn} lacks learnable parameters and thus cannot adapt to
data. Additionally, all features in each xn contribute equally to attention weights,
limiting the model’s ability to focus selectively on informative features.

Partial solution

Define
X̃ = XU, U ∈ RD×D,

where U is learnable, analogous to a ’layer’ in standard neural networks. Then

Y = Softmax(XUUTXT)XU.

Still a problem

Although this has much more flexibility, the matrix

XUUTXT

is symmetric, whereas we would like the attention mechanism to support asymmetry.

6 / 21



Literature Review

Solution

Vaswani et al. (2017) proposed defining separate query, key, and value matrices each
having their own independent linear transformations:

Q = XW(q), K = XW(k), V = XW(v),

where W(q), W(k) ∈ RD×Dk and W(v) ∈ RD×Dv , where Dv governs the
dimensionality of the output. Therefore

Y = Softmax(QKT)V ← QKTare the attention weights.

Figure: Illustration of the evaluation of the output from an attention layer given the
query, key, and value matrices Q, K, and V, respectively.

7 / 21



Literature Review

Solution

Vaswani et al. (2017) proposed defining separate query, key, and value matrices each
having their own independent linear transformations:

Q = XW(q), K = XW(k), V = XW(v),

where W(q), W(k) ∈ RD×Dk and W(v) ∈ RD×Dv , where Dv governs the
dimensionality of the output. Therefore

Y = Softmax(QKT)V ← QKTare the attention weights.

Figure: Illustration of the evaluation of the output from an attention layer given the
query, key, and value matrices Q, K, and V, respectively.

7 / 21



Literature Review

Final adjustment

To avoid vanishing gradients in softmax, scale
the dot product of query and key vectors by√
Dk, yielding the output of the attention layer

as:

Y = Attention(Q,K,V) ≡ Softmax

(
QKT

√
Dk

)
V

Scaled dot-product self-attention

This structure constitutes a single attention
head.

Figure: Information flow. Here ’mat
mul’ denotes matrix multiplication,
and ’scale’ refers to the normalization
of the argument to the softmax using√
Dk.

8 / 21



Literature review

Modeling multiple dependency patterns

To capture different types of relationships in the data simultaneously we replicate the
attention mechanism into multiple heads.

Suppose we have H attention heads indexed by h = 1, . . . , H of the form

Hh = Attention(Qh,Kh,Vh), Qh = XW
(q)
h , Kh = XW

(k)
h , Vh = XW

(v)
h .

The heads are first concatenated into a single matrix, and the result is then linearly
transformed using a matrix W(◦) to give a combined output in the form

Y(X) = Concat(H1, . . . ,HH)W(◦),∈ RN×Dv .

Figure: Network architecture for multi-head attention.

9 / 21



Literature review

Modeling multiple dependency patterns

To capture different types of relationships in the data simultaneously we replicate the
attention mechanism into multiple heads.

Suppose we have H attention heads indexed by h = 1, . . . , H of the form

Hh = Attention(Qh,Kh,Vh), Qh = XW
(q)
h , Kh = XW

(k)
h , Vh = XW

(v)
h .

The heads are first concatenated into a single matrix, and the result is then linearly
transformed using a matrix W(◦) to give a combined output in the form

Y(X) = Concat(H1, . . . ,HH)W(◦),∈ RN×Dv .

Figure: Network architecture for multi-head attention.

9 / 21



Literature review

Modeling multiple dependency patterns

To capture different types of relationships in the data simultaneously we replicate the
attention mechanism into multiple heads.

Suppose we have H attention heads indexed by h = 1, . . . , H of the form

Hh = Attention(Qh,Kh,Vh), Qh = XW
(q)
h , Kh = XW

(k)
h , Vh = XW

(v)
h .

The heads are first concatenated into a single matrix, and the result is then linearly
transformed using a matrix W(◦) to give a combined output in the form

Y(X) = Concat(H1, . . . ,HH)W(◦),∈ RN×Dv .

Figure: Network architecture for multi-head attention.

9 / 21



Literature review

Modeling multiple dependency patterns

To capture different types of relationships in the data simultaneously we replicate the
attention mechanism into multiple heads.

Suppose we have H attention heads indexed by h = 1, . . . , H of the form

Hh = Attention(Qh,Kh,Vh), Qh = XW
(q)
h , Kh = XW

(k)
h , Vh = XW

(v)
h .

The heads are first concatenated into a single matrix, and the result is then linearly
transformed using a matrix W(◦) to give a combined output in the form

Y(X) = Concat(H1, . . . ,HH)W(◦),∈ RN×Dv .

Figure: Network architecture for multi-head attention.

9 / 21



Literature Review

Figure: Information flow in a multi-head attention layer.

10 / 21



Literature Review

Training improvements

To improve training efficiency, the output is
followed by a residual connection and a layer
normalization (Ba, Kiros, and Hinton, 2016)

Z = LayerNorm(Y(X) +X).

Still work to do

An MLP is added after the attention layer to
break the linearity of the output and increase
the expressive capabilities of the attention layer:

X̃ = LayerNorm(MLP(Z) + Z).

Again, this neural network layer can be
improved by using a residual connection and
layer normalization. A short notation:

X̃ = TFθ(X)

Figure: One layer of the transformer
architecture. Here, ’add and norm’
denotes a residual connection followed
by layer normalization.

11 / 21



Literature Review

Training improvements

To improve training efficiency, the output is
followed by a residual connection and a layer
normalization (Ba, Kiros, and Hinton, 2016)

Z = LayerNorm(Y(X) +X).

Still work to do

An MLP is added after the attention layer to
break the linearity of the output and increase
the expressive capabilities of the attention layer:

X̃ = LayerNorm(MLP(Z) + Z).

Again, this neural network layer can be
improved by using a residual connection and
layer normalization. A short notation:

X̃ = TFθ(X)

Figure: One layer of the transformer
architecture. Here, ’add and norm’
denotes a residual connection followed
by layer normalization.

11 / 21



Literature Review

Training improvements

To improve training efficiency, the output is
followed by a residual connection and a layer
normalization (Ba, Kiros, and Hinton, 2016)

Z = LayerNorm(Y(X) +X).

Still work to do

An MLP is added after the attention layer to
break the linearity of the output and increase
the expressive capabilities of the attention layer:

X̃ = LayerNorm(MLP(Z) + Z).

Again, this neural network layer can be
improved by using a residual connection and
layer normalization. A short notation:

X̃ = TFθ(X)

Figure: One layer of the transformer
architecture. Here, ’add and norm’
denotes a residual connection followed
by layer normalization.

11 / 21



Literature Review

Training improvements

To improve training efficiency, the output is
followed by a residual connection and a layer
normalization (Ba, Kiros, and Hinton, 2016)

Z = LayerNorm(Y(X) +X).

Still work to do

An MLP is added after the attention layer to
break the linearity of the output and increase
the expressive capabilities of the attention layer:

X̃ = LayerNorm(MLP(Z) + Z).

Again, this neural network layer can be
improved by using a residual connection and
layer normalization. A short notation:

X̃ = TFθ(X)

Figure: One layer of the transformer
architecture. Here, ’add and norm’
denotes a residual connection followed
by layer normalization.

11 / 21



Literature Review

Training improvements

To improve training efficiency, the output is
followed by a residual connection and a layer
normalization (Ba, Kiros, and Hinton, 2016)

Z = LayerNorm(Y(X) +X).

Still work to do

An MLP is added after the attention layer to
break the linearity of the output and increase
the expressive capabilities of the attention layer:

X̃ = LayerNorm(MLP(Z) + Z).

Again, this neural network layer can be
improved by using a residual connection and
layer normalization. A short notation:

X̃ = TFθ(X)

Figure: One layer of the transformer
architecture. Here, ’add and norm’
denotes a residual connection followed
by layer normalization.

11 / 21



Transformers in Statistics

Garg et al. (2022) show empirically that standard Transformers can be trained from
scratch to perform in-context learning of linear functions.

Notation

Let X be the input feature space, and Y be the output/label space, such that
F = {f : X → Y} is class of functions between this spaces.

In-context learning setting

1) Sample f ∼ PF and N i.i.d. inputs tokens x1, . . . ,xN ∼ PX .

2) Generate labels yi = f(xi) ∈ Y for i = 1, . . . , N , obtaining {(xi,yi)}Ni=1.

3) Define a length-i prompt as

X
(i)
prompt = (x1,y1, . . . ,xi−1,yi−1,xi)

T,

such that the model prediction is ŷi = WTFθ(X
(i)
prompt) ∈ Y, i = 1, . . . , N .

4) Training by minimizing the expected loss

min
θ

E
x1,...,xn∼PX

f∼PF

[
1

N

N∑
i=1

ℓ(ŷi,yi)

]
,

where ℓ is an appropriate loss function.

12 / 21



Transformers in Statistics

Garg et al. (2022) show empirically that standard Transformers can be trained from
scratch to perform in-context learning of linear functions.

Notation

Let X be the input feature space, and Y be the output/label space, such that
F = {f : X → Y} is class of functions between this spaces.

In-context learning setting

1) Sample f ∼ PF and N i.i.d. inputs tokens x1, . . . ,xN ∼ PX .

2) Generate labels yi = f(xi) ∈ Y for i = 1, . . . , N , obtaining {(xi,yi)}Ni=1.

3) Define a length-i prompt as

X
(i)
prompt = (x1,y1, . . . ,xi−1,yi−1,xi)

T,

such that the model prediction is ŷi = WTFθ(X
(i)
prompt) ∈ Y, i = 1, . . . , N .

4) Training by minimizing the expected loss

min
θ

E
x1,...,xn∼PX

f∼PF

[
1

N

N∑
i=1

ℓ(ŷi,yi)

]
,

where ℓ is an appropriate loss function.

12 / 21



Transformers in Statistics

Garg et al. (2022) show empirically that standard Transformers can be trained from
scratch to perform in-context learning of linear functions.

Notation

Let X be the input feature space, and Y be the output/label space, such that
F = {f : X → Y} is class of functions between this spaces.

In-context learning setting

1) Sample f ∼ PF and N i.i.d. inputs tokens x1, . . . ,xN ∼ PX .

2) Generate labels yi = f(xi) ∈ Y for i = 1, . . . , N , obtaining {(xi,yi)}Ni=1.

3) Define a length-i prompt as

X
(i)
prompt = (x1,y1, . . . ,xi−1,yi−1,xi)

T,

such that the model prediction is ŷi = WTFθ(X
(i)
prompt) ∈ Y, i = 1, . . . , N .

4) Training by minimizing the expected loss

min
θ

E
x1,...,xn∼PX

f∼PF

[
1

N

N∑
i=1

ℓ(ŷi,yi)

]
,

where ℓ is an appropriate loss function.

12 / 21



Transformers in Statistics

Garg et al. (2022) show empirically that standard Transformers can be trained from
scratch to perform in-context learning of linear functions.

Notation

Let X be the input feature space, and Y be the output/label space, such that
F = {f : X → Y} is class of functions between this spaces.

In-context learning setting

1) Sample f ∼ PF and N i.i.d. inputs tokens x1, . . . ,xN ∼ PX .

2) Generate labels yi = f(xi) ∈ Y for i = 1, . . . , N , obtaining {(xi,yi)}Ni=1.

3) Define a length-i prompt as

X
(i)
prompt = (x1,y1, . . . ,xi−1,yi−1,xi)

T,

such that the model prediction is ŷi = WTFθ(X
(i)
prompt) ∈ Y, i = 1, . . . , N .

4) Training by minimizing the expected loss

min
θ

E
x1,...,xn∼PX

f∼PF

[
1

N

N∑
i=1

ℓ(ŷi,yi)

]
,

where ℓ is an appropriate loss function.

12 / 21



Transformers in Statistics

Garg et al. (2022) show empirically that standard Transformers can be trained from
scratch to perform in-context learning of linear functions.

Notation

Let X be the input feature space, and Y be the output/label space, such that
F = {f : X → Y} is class of functions between this spaces.

In-context learning setting

1) Sample f ∼ PF and N i.i.d. inputs tokens x1, . . . ,xN ∼ PX .

2) Generate labels yi = f(xi) ∈ Y for i = 1, . . . , N , obtaining {(xi,yi)}Ni=1.

3) Define a length-i prompt as

X
(i)
prompt = (x1,y1, . . . ,xi−1,yi−1,xi)

T,

such that the model prediction is ŷi = WTFθ(X
(i)
prompt) ∈ Y, i = 1, . . . , N .

4) Training by minimizing the expected loss

min
θ

E
x1,...,xn∼PX

f∼PF

[
1

N

N∑
i=1

ℓ(ŷi,yi)

]
,

where ℓ is an appropriate loss function.

12 / 21



Transformers in Statistics

Garg et al. (2022) show empirically that standard Transformers can be trained from
scratch to perform in-context learning of linear functions.

Notation

Let X be the input feature space, and Y be the output/label space, such that
F = {f : X → Y} is class of functions between this spaces.

In-context learning setting

1) Sample f ∼ PF and N i.i.d. inputs tokens x1, . . . ,xN ∼ PX .

2) Generate labels yi = f(xi) ∈ Y for i = 1, . . . , N , obtaining {(xi,yi)}Ni=1.

3) Define a length-i prompt as

X
(i)
prompt = (x1,y1, . . . ,xi−1,yi−1,xi)

T,

such that the model prediction is ŷi = WTFθ(X
(i)
prompt) ∈ Y, i = 1, . . . , N .

4) Training by minimizing the expected loss

min
θ

E
x1,...,xn∼PX

f∼PF

[
1

N

N∑
i=1

ℓ(ŷi,yi)

]
,

where ℓ is an appropriate loss function.

12 / 21



Transformers in Statistics

Garg et al. (2022) show empirically that standard Transformers can be trained from
scratch to perform in-context learning of linear functions.

Notation

Let X be the input feature space, and Y be the output/label space, such that
F = {f : X → Y} is class of functions between this spaces.

In-context learning setting

1) Sample f ∼ PF and N i.i.d. inputs tokens x1, . . . ,xN ∼ PX .

2) Generate labels yi = f(xi) ∈ Y for i = 1, . . . , N , obtaining {(xi,yi)}Ni=1.

3) Define a length-i prompt as

X
(i)
prompt = (x1,y1, . . . ,xi−1,yi−1,xi)

T,

such that the model prediction is ŷi = WTFθ(X
(i)
prompt) ∈ Y, i = 1, . . . , N .

4) Training by minimizing the expected loss

min
θ

E
x1,...,xn∼PX

f∼PF

[
1

N

N∑
i=1

ℓ(ŷi,yi)

]
,

where ℓ is an appropriate loss function.

12 / 21



Transformers in Statistics

Example (Linear functions)

Consider the class of linear functions

F = {f : Rd → R | f(x) = wTx, w ∈ Rd}.

Sample

w ∼ PF := Nd(0, Id), xi
i.i.d.∼ PX := Nd(0, Id), i = 1, . . . , N,

independently. For each f determined by w, generate training pairs

yi = f(xi) = wTxi.

Then, train the Transformer to predict ŷi = WTFθ(X
(i)
prompt) where

X
(i)
prompt = (x1,y1, . . . ,xi−1,yi−1,xi),

by minimizing the expected mean squared error loss

min
θ

E
x1,...,xN∼Nd(0,Id)

f∼Nd(0,Id)

[
1

N

N∑
i=1

(ŷi − yi)
2

]
.

13 / 21



Transformers in Statistics

Example (Linear functions)

Consider the class of linear functions

F = {f : Rd → R | f(x) = wTx, w ∈ Rd}.

Sample

w ∼ PF := Nd(0, Id), xi
i.i.d.∼ PX := Nd(0, Id), i = 1, . . . , N,

independently. For each f determined by w, generate training pairs

yi = f(xi) = wTxi.

Then, train the Transformer to predict ŷi = WTFθ(X
(i)
prompt) where

X
(i)
prompt = (x1,y1, . . . ,xi−1,yi−1,xi),

by minimizing the expected mean squared error loss

min
θ

E
x1,...,xN∼Nd(0,Id)

f∼Nd(0,Id)

[
1

N

N∑
i=1

(ŷi − yi)
2

]
.

13 / 21



Transformers in Statistics

Example (Linear functions)

Consider the class of linear functions

F = {f : Rd → R | f(x) = wTx, w ∈ Rd}.

Sample

w ∼ PF := Nd(0, Id), xi
i.i.d.∼ PX := Nd(0, Id), i = 1, . . . , N,

independently. For each f determined by w, generate training pairs

yi = f(xi) = wTxi.

Then, train the Transformer to predict ŷi = WTFθ(X
(i)
prompt) where

X
(i)
prompt = (x1,y1, . . . ,xi−1,yi−1,xi),

by minimizing the expected mean squared error loss

min
θ

E
x1,...,xN∼Nd(0,Id)

f∼Nd(0,Id)

[
1

N

N∑
i=1

(ŷi − yi)
2

]
.

13 / 21



Transformers in Statistics

Example (Linear functions)

Consider the class of linear functions

F = {f : Rd → R | f(x) = wTx, w ∈ Rd}.

Sample

w ∼ PF := Nd(0, Id), xi
i.i.d.∼ PX := Nd(0, Id), i = 1, . . . , N,

independently. For each f determined by w, generate training pairs

yi = f(xi) = wTxi.

Then, train the Transformer to predict ŷi = WTFθ(X
(i)
prompt) where

X
(i)
prompt = (x1,y1, . . . ,xi−1,yi−1,xi),

by minimizing the expected mean squared error loss

min
θ

E
x1,...,xN∼Nd(0,Id)

f∼Nd(0,Id)

[
1

N

N∑
i=1

(ŷi − yi)
2

]
.

13 / 21



Transformers in Statistics

Example (Linear functions)

Consider the class of linear functions

F = {f : Rd → R | f(x) = wTx, w ∈ Rd}.

Sample

w ∼ PF := Nd(0, Id), xi
i.i.d.∼ PX := Nd(0, Id), i = 1, . . . , N,

independently. For each f determined by w, generate training pairs

yi = f(xi) = wTxi.

Then, train the Transformer to predict ŷi = WTFθ(X
(i)
prompt) where

X
(i)
prompt = (x1,y1, . . . ,xi−1,yi−1,xi),

by minimizing the expected mean squared error loss

min
θ

E
x1,...,xN∼Nd(0,Id)

f∼Nd(0,Id)

[
1

N

N∑
i=1

(ŷi − yi)
2

]
.

13 / 21



Transformers in Statistics

In this setting, the Transformer learns to approximate the least squares estimator.

Figure: Normalized squared error of the Transformer as a function of the number of
in-context examples (Garg et al., 2022).

Bai et al. (2023) show1 that Transformers can implement a broad class of standard
ML algorithms in context, such as least squares, Ridge regression, Lasso, convex risk
minimization for GLMs.

1Possibly the most mathematically formal paper on this topic.
14 / 21



Transformers in Statistics

In this setting, the Transformer learns to approximate the least squares estimator.

Figure: Normalized squared error of the Transformer as a function of the number of
in-context examples (Garg et al., 2022).

Bai et al. (2023) show1 that Transformers can implement a broad class of standard
ML algorithms in context, such as least squares, Ridge regression, Lasso, convex risk
minimization for GLMs.

1Possibly the most mathematically formal paper on this topic.
14 / 21



Large Language Models

Decoder transformers

These can be used as generative models that create output sequences of tokens. we
will focus on a class of models called GPT which stands for generative pre-trained
transformer.

Goal

Construct an autoregressive model of the form defined by

p(x1, . . . ,xN ) =
N∏

n=1

p(xn | x1:n−1), x1:n−1 = (x1, . . . ,xn−1),

where conditional distributions p(xn | x1:n−1) are expressed using a Transformer
neural network that is learned from data.

Idea

x1, . . . ,xN
Transformer layers⇒ x̃1, . . . , x̃N ,

Each output needs to represent a probability distribution over the class of tokens:

Y = Softmax(X̃W(p)), W(p) ∈ RD×K .

15 / 21



Large Language Models

Decoder transformers

These can be used as generative models that create output sequences of tokens. we
will focus on a class of models called GPT which stands for generative pre-trained
transformer.

Goal

Construct an autoregressive model of the form defined by

p(x1, . . . ,xN ) =
N∏

n=1

p(xn | x1:n−1), x1:n−1 = (x1, . . . ,xn−1),

where conditional distributions p(xn | x1:n−1) are expressed using a Transformer
neural network that is learned from data.

Idea

x1, . . . ,xN
Transformer layers⇒ x̃1, . . . , x̃N ,

Each output needs to represent a probability distribution over the class of tokens:

Y = Softmax(X̃W(p)), W(p) ∈ RD×K .

15 / 21



Large Language Models

Decoder transformers

These can be used as generative models that create output sequences of tokens. we
will focus on a class of models called GPT which stands for generative pre-trained
transformer.

Goal

Construct an autoregressive model of the form defined by

p(x1, . . . ,xN ) =
N∏

n=1

p(xn | x1:n−1), x1:n−1 = (x1, . . . ,xn−1),

where conditional distributions p(xn | x1:n−1) are expressed using a Transformer
neural network that is learned from data.

Idea

x1, . . . ,xN
Transformer layers⇒ x̃1, . . . , x̃N ,

Each output needs to represent a probability distribution over the class of tokens:

Y = Softmax(X̃W(p)), W(p) ∈ RD×K .

15 / 21



GPT Architecture

Embedding and positional encoding

We begin by defining a dictionary

V = {w1, w2, . . . , wK},

which is a fixed, finite set of words indexed from 1 to K. A word vi is mapped to an
index in the dictionary using a tokenization function τ : V → {1, . . . ,K}, such that

τ(vi) = ki with vi = wki
.

This index is then used to construct a one-hot encoded vector oi ∈ {0, 1}K , where
the ki-th component is set to 1 and all others are 0.

This one-hot vector is then projected into a dense, learnable embedding space using
an embedding matrix E ∈ RD×K , and positional information (Vaswani et al. 2017) is
added

xi = Eoi + ri.

16 / 21



GPT Architecture

Embedding and positional encoding

We begin by defining a dictionary

V = {w1, w2, . . . , wK},

which is a fixed, finite set of words indexed from 1 to K. A word vi is mapped to an
index in the dictionary using a tokenization function τ : V → {1, . . . ,K}, such that

τ(vi) = ki with vi = wki
.

This index is then used to construct a one-hot encoded vector oi ∈ {0, 1}K , where
the ki-th component is set to 1 and all others are 0.

This one-hot vector is then projected into a dense, learnable embedding space using
an embedding matrix E ∈ RD×K , and positional information (Vaswani et al. 2017) is
added

xi = Eoi + ri.

16 / 21



GPT Architecture

Embedding and positional encoding

We begin by defining a dictionary

V = {w1, w2, . . . , wK},

which is a fixed, finite set of words indexed from 1 to K. A word vi is mapped to an
index in the dictionary using a tokenization function τ : V → {1, . . . ,K}, such that

τ(vi) = ki with vi = wki
.

This index is then used to construct a one-hot encoded vector oi ∈ {0, 1}K , where
the ki-th component is set to 1 and all others are 0.

This one-hot vector is then projected into a dense, learnable embedding space using
an embedding matrix E ∈ RD×K , and positional information (Vaswani et al. 2017) is
added

xi = Eoi + ri.

16 / 21



GPT Architecture

Embedding and positional encoding

We begin by defining a dictionary

V = {w1, w2, . . . , wK},

which is a fixed, finite set of words indexed from 1 to K. A word vi is mapped to an
index in the dictionary using a tokenization function τ : V → {1, . . . ,K}, such that

τ(vi) = ki with vi = wki
.

This index is then used to construct a one-hot encoded vector oi ∈ {0, 1}K , where
the ki-th component is set to 1 and all others are 0.

This one-hot vector is then projected into a dense, learnable embedding space using
an embedding matrix E ∈ RD×K , and positional information (Vaswani et al. 2017) is
added

xi = Eoi + ri.

16 / 21



GPT Architecture

Figure: Architecture of a GPT decoder transformer network. Here ‘LSM’ stands for
linear-softmax and denotes a linear transformation whose learnable parameters are
shared across the token positions, followed by a softmax activation function.

17 / 21



Gen AI for Chained Extremes

How do we apply GPT to generate sequences of extreme events?2

▶ Let (X1, . . . , Xd) ∈ X d be a chain of extreme events, e.g. X = R+.

▶ Define a finite partition {Ck}Kk=1 of X , and a one-hot tokenization function

τ : X → {0, 1}K defined as

τ(Xi) = (I(Xi ∈ C1), . . . , I(Xi ∈ CK)), i = 1, . . . , d.

▶ Each token is then projected into an embedding space using a learnable matrix
E ∈ RD×K , positional encoding ri and extremal encoding3 are added

si = Eτ(Xi) + ri + ei.

▶ Instead of modeling the joint density of (X1, . . . , Xd), we model the probability
that each Xi falls in a set Ck, using:

P (X1 ∈ Ck1
, . . . , Xd ∈ Ckd

) =
d∏

i=1

P (Xi ∈ Cki
| X1:i−1).

2Ongoing work with Miguel de Carvalho and Ronny Vallejos.
3e.g. based on extreme quantile regression models.

18 / 21



Gen AI for Chained Extremes

How do we apply GPT to generate sequences of extreme events?2

▶ Let (X1, . . . , Xd) ∈ X d be a chain of extreme events, e.g. X = R+.

▶ Define a finite partition {Ck}Kk=1 of X , and a one-hot tokenization function

τ : X → {0, 1}K defined as

τ(Xi) = (I(Xi ∈ C1), . . . , I(Xi ∈ CK)), i = 1, . . . , d.

▶ Each token is then projected into an embedding space using a learnable matrix
E ∈ RD×K , positional encoding ri and extremal encoding3 are added

si = Eτ(Xi) + ri + ei.

▶ Instead of modeling the joint density of (X1, . . . , Xd), we model the probability
that each Xi falls in a set Ck, using:

P (X1 ∈ Ck1
, . . . , Xd ∈ Ckd

) =

d∏
i=1

P (Xi ∈ Cki
| X1:i−1).

2Ongoing work with Miguel de Carvalho and Ronny Vallejos.
3e.g. based on extreme quantile regression models.

18 / 21



Gen AI for Chained Extremes

How do we apply GPT to generate sequences of extreme events?2

▶ Let (X1, . . . , Xd) ∈ X d be a chain of extreme events, e.g. X = R+.

▶ Define a finite partition {Ck}Kk=1 of X , and a one-hot tokenization function

τ : X → {0, 1}K defined as

τ(Xi) = (I(Xi ∈ C1), . . . , I(Xi ∈ CK)), i = 1, . . . , d.

▶ Each token is then projected into an embedding space using a learnable matrix
E ∈ RD×K , positional encoding ri and extremal encoding3 are added

si = Eτ(Xi) + ri + ei.

▶ Instead of modeling the joint density of (X1, . . . , Xd), we model the probability
that each Xi falls in a set Ck, using:

P (X1 ∈ Ck1
, . . . , Xd ∈ Ckd

) =

d∏
i=1

P (Xi ∈ Cki
| X1:i−1).

2Ongoing work with Miguel de Carvalho and Ronny Vallejos.
3e.g. based on extreme quantile regression models.

18 / 21



Gen AI for Chained Extremes

How do we apply GPT to generate sequences of extreme events?2

▶ Let (X1, . . . , Xd) ∈ X d be a chain of extreme events, e.g. X = R+.

▶ Define a finite partition {Ck}Kk=1 of X , and a one-hot tokenization function

τ : X → {0, 1}K defined as

τ(Xi) = (I(Xi ∈ C1), . . . , I(Xi ∈ CK)), i = 1, . . . , d.

▶ Each token is then projected into an embedding space using a learnable matrix
E ∈ RD×K , positional encoding ri and extremal encoding3 are added

si = Eτ(Xi) + ri + ei.

▶ Instead of modeling the joint density of (X1, . . . , Xd), we model the probability
that each Xi falls in a set Ck, using:

P (X1 ∈ Ck1
, . . . , Xd ∈ Ckd

) =

d∏
i=1

P (Xi ∈ Cki
| X1:i−1).

2Ongoing work with Miguel de Carvalho and Ronny Vallejos.
3e.g. based on extreme quantile regression models.

18 / 21



Gen AI for Chained Extremes

How do we apply GPT to generate sequences of extreme events?2

▶ Let (X1, . . . , Xd) ∈ X d be a chain of extreme events, e.g. X = R+.

▶ Define a finite partition {Ck}Kk=1 of X , and a one-hot tokenization function

τ : X → {0, 1}K defined as

τ(Xi) = (I(Xi ∈ C1), . . . , I(Xi ∈ CK)), i = 1, . . . , d.

▶ Each token is then projected into an embedding space using a learnable matrix
E ∈ RD×K , positional encoding ri and extremal encoding3 are added

si = Eτ(Xi) + ri + ei.

▶ Instead of modeling the joint density of (X1, . . . , Xd), we model the probability
that each Xi falls in a set Ck, using:

P (X1 ∈ Ck1
, . . . , Xd ∈ Ckd

) =

d∏
i=1

P (Xi ∈ Cki
| X1:i−1).

2Ongoing work with Miguel de Carvalho and Ronny Vallejos.
3e.g. based on extreme quantile regression models.

18 / 21



Gen AI for Chained Extremes

How do we apply GPT to generate sequences of extreme events?

▶ Each conditional P (Xi ∈ Ck | Xi−L:i−1) is approximated by a decoder
Transformer4 TFθ , which maps the input embeddings (si−L, . . . , si−1):

S̃i = TFθ(Si), with Si = (si−L, . . . , si−1)
T,

▶ This representation is then passed through a learnable linear projection
W ∈ RK×D to obtain the logits zi = (zi1, . . . , ziK) ∈ RK :

zi = WS̃i.

▶ Finally, the softmax layer converts the logits into probabilities:

Pθ(Xi ∈ Ck | Xi−L:i−1) =
exp(zik)∑K
j=1 exp(zij)

, k = 1, . . . ,K.

▶ The model is trained by minimizing the empirical negative log-likelihood over a

large dataset D = {(X(t)
1 , . . . , X

(t)
d )}Nt=1:

ℓ̂(θ) = −
1

Nd

N∑
t=1

d∑
i=1

logPθ(X
(t)
i ∈ C

k
(t)
i

| X(t)
i−L:i−1).

4Just like ChatGPT!
19 / 21



Gen AI for Chained Extremes

How do we apply GPT to generate sequences of extreme events?

▶ Each conditional P (Xi ∈ Ck | Xi−L:i−1) is approximated by a decoder
Transformer4 TFθ , which maps the input embeddings (si−L, . . . , si−1):

S̃i = TFθ(Si), with Si = (si−L, . . . , si−1)
T,

▶ This representation is then passed through a learnable linear projection
W ∈ RK×D to obtain the logits zi = (zi1, . . . , ziK) ∈ RK :

zi = WS̃i.

▶ Finally, the softmax layer converts the logits into probabilities:

Pθ(Xi ∈ Ck | Xi−L:i−1) =
exp(zik)∑K
j=1 exp(zij)

, k = 1, . . . ,K.

▶ The model is trained by minimizing the empirical negative log-likelihood over a

large dataset D = {(X(t)
1 , . . . , X

(t)
d )}Nt=1:

ℓ̂(θ) = −
1

Nd

N∑
t=1

d∑
i=1

logPθ(X
(t)
i ∈ C

k
(t)
i

| X(t)
i−L:i−1).

4Just like ChatGPT!
19 / 21



Gen AI for Chained Extremes

How do we apply GPT to generate sequences of extreme events?

▶ Each conditional P (Xi ∈ Ck | Xi−L:i−1) is approximated by a decoder
Transformer4 TFθ , which maps the input embeddings (si−L, . . . , si−1):

S̃i = TFθ(Si), with Si = (si−L, . . . , si−1)
T,

▶ This representation is then passed through a learnable linear projection
W ∈ RK×D to obtain the logits zi = (zi1, . . . , ziK) ∈ RK :

zi = WS̃i.

▶ Finally, the softmax layer converts the logits into probabilities:

Pθ(Xi ∈ Ck | Xi−L:i−1) =
exp(zik)∑K
j=1 exp(zij)

, k = 1, . . . ,K.

▶ The model is trained by minimizing the empirical negative log-likelihood over a

large dataset D = {(X(t)
1 , . . . , X

(t)
d )}Nt=1:

ℓ̂(θ) = −
1

Nd

N∑
t=1

d∑
i=1

logPθ(X
(t)
i ∈ C

k
(t)
i

| X(t)
i−L:i−1).

4Just like ChatGPT!
19 / 21



Gen AI for Chained Extremes

How do we apply GPT to generate sequences of extreme events?

▶ Each conditional P (Xi ∈ Ck | Xi−L:i−1) is approximated by a decoder
Transformer4 TFθ , which maps the input embeddings (si−L, . . . , si−1):

S̃i = TFθ(Si), with Si = (si−L, . . . , si−1)
T,

▶ This representation is then passed through a learnable linear projection
W ∈ RK×D to obtain the logits zi = (zi1, . . . , ziK) ∈ RK :

zi = WS̃i.

▶ Finally, the softmax layer converts the logits into probabilities:

Pθ(Xi ∈ Ck | Xi−L:i−1) =
exp(zik)∑K
j=1 exp(zij)

, k = 1, . . . ,K.

▶ The model is trained by minimizing the empirical negative log-likelihood over a

large dataset D = {(X(t)
1 , . . . , X

(t)
d )}Nt=1:

ℓ̂(θ) = −
1

Nd

N∑
t=1

d∑
i=1

logPθ(X
(t)
i ∈ C

k
(t)
i

| X(t)
i−L:i−1).

4Just like ChatGPT!
19 / 21



References

References

1) Vaswani et al. (2017). Attention is All You Need. arXiv:1706.03762.

2) Ba et al. (2016). Layer Normalization. arXiv:1607.06450.

3) Garg et al. (2022). What Can Transformers Learn In-Context? A Case Study of
Simple Function Classes. arXiv:2208.01066v3.

4) Akyürek et al. (2023). What Learning Algorithm Is In-Context Learning?
Investigations with Linear Models. arXiv:2301.05207.

5) Bai et al. (2023). Transformers as Statisticians: Provable In-Context Learning
with In-Context Algorithm Selection. arXiv:2306.11644

6) Bishop & Bishop (2024). Deep Learning: Foundations and Concepts. Springer.

20 / 21



Exploring Transformer-Based Models for

Cascading Extremes

Clemente Ferrer
clemente.ferrer@usm.cl

Department of Mathematics
Universidad Técnica Federico Santa Maŕıa

Joint work with Miguel de Carvalho & Ronny Vallejos

Workshop on Generative AI for Extreme Events

Edinburgh, UK

June 13, 2025

21 / 21


