Exploring Transformer-Based Models for Cascading Extremes

Clemente Ferrer

clemente.ferrer@usm.cl

Department of Mathematics Universidad Técnica Federico Santa María

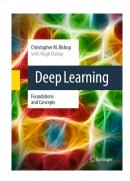
Joint work with Miguel de Carvalho & Ronny Vallejos

Workshop on Generative AI for Extreme Events

Edinburgh, UK June 13, 2025

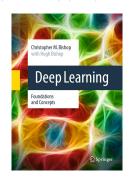
During this talk I will cover the following topics:

- ► Why use Transformers?
- A Literature Review on Transformers.
- Transformer in Statistics.
- ► Large Language Models and Generative Pre-trained Transformers (GPT).
- Ideas on Transformers for Chained Extremes



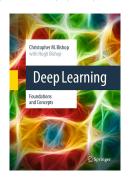
During this talk I will cover the following topics:

- ▶ Why use Transformers?
- A Literature Review on Transformers.
- Transformer in Statistics.
- ► Large Language Models and Generative Pre-trained Transformers (GPT).
- Ideas on Transformers for Chained Extremes



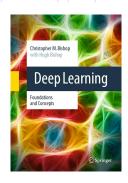
During this talk I will cover the following topics:

- ▶ Why use Transformers?
- A Literature Review on Transformers.
- Transformer in Statistics.
- ► Large Language Models and Generative Pre-trained Transformers (GPT).
- Ideas on Transformers for Chained Extremes



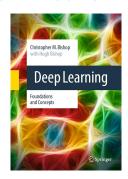
During this talk I will cover the following topics:

- ▶ Why use Transformers?
- A Literature Review on Transformers.
- Transformer in Statistics.
- ► Large Language Models and Generative Pre-trained Transformers (GPT).
- Ideas on Transformers for Chained Extremes



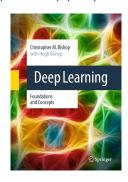
During this talk I will cover the following topics:

- ▶ Why use Transformers?
- A Literature Review on Transformers.
- Transformer in Statistics.
- ► Large Language Models and Generative Pre-trained Transformers (GPT).
- Ideas on Transformers for Chained Extremes



During this talk I will cover the following topics:

- Why use Transformers?
- A Literature Review on Transformers.
- Transformer in Statistics.
- Large Language Models and Generative Pre-trained Transformers (GPT).
- Ideas on Transformers for Chained Extremes.



Why use Transformers?

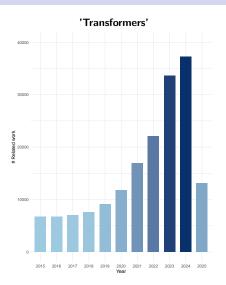


Figure: Number of works (articles, preprints, book chapter) referring to 'Transformers' since 2015 (Source: OpenAlex.org).

${\it Suppose}\,\,N\,\,{\it tokens}$

$$\mathbf{x}_1, \dots, \mathbf{x}_N \quad \leftarrow \quad \mathsf{Input data}.$$

where $\mathbf{x}_n = (x_{n1}, \dots, x_{nD})^\mathrm{T} \in \mathbb{R}^D$, $n = 1, \dots, N$. The elements of the tokens are called features.

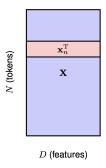


Figure: The structure of the data matrix \mathbf{X} , of dimension $N \times D$, in which row r represents the transposed data vector \mathbf{x}_n^T .

${\bf Suppose}\ N\ {\bf tokens}$

$$\mathbf{x}_1, \dots, \mathbf{x}_N \quad \leftarrow \quad \mathsf{Input data}.$$

where $\mathbf{x}_n=(x_{n1},\dots,x_{nD})^\mathrm{T}\in\mathbb{R}^D$, $n=1,\dots,N.$ The elements of the tokens are called features.

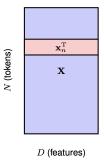


Figure: The structure of the data matrix \mathbf{X} , of dimension $N \times D$, in which row n represents the transposed data vector \mathbf{x}_n^T .

Goal

Define a transformation from tokens $\mathbf{x}_1, \dots, \mathbf{x}_N$ to output embeddings $\mathbf{y}_1, \dots, \mathbf{y}_N$, where each \mathbf{y}_n is a weighted combination of ALL \mathbf{x}_m , with weights reflecting the relevance of \mathbf{x}_m to \mathbf{y}_n .

Proposal

$$\mathbf{y}_n = \sum_{m=1}^N \alpha_{nm} \mathbf{x}_m,$$

where $\alpha_{nm} \geq 0$ are attention weights such that $\sum_{m=1}^{N} \alpha_{nm} = 1$

FIRST APPROACH

$$a_{nm} = \frac{\exp(\mathbf{x}_n^{\mathrm{T}}\mathbf{x}_m)}{\sum_{m'=1}^{N} \exp(\mathbf{x}_n^{\mathrm{T}}\mathbf{x}_{m'})} \quad \leftarrow \quad \mathsf{Softmax}$$

$$\mathbf{Y} = \operatorname{Softmax}(\mathbf{X}\mathbf{X}^{\mathrm{T}})\mathbf{X} \quad \leftarrow \quad \mathsf{Self-Attention}$$

GOAL

Define a transformation from tokens $\mathbf{x}_1, \dots, \mathbf{x}_N$ to output embeddings $\mathbf{y}_1, \dots, \mathbf{y}_N$, where each \mathbf{y}_n is a weighted combination of ALL \mathbf{x}_m , with weights reflecting the relevance of \mathbf{x}_m to \mathbf{y}_n .

Proposal

$$\mathbf{y}_n = \sum_{m=1}^N \alpha_{nm} \mathbf{x}_m,$$

where $\alpha_{nm} \geq 0$ are attention weights such that $\sum_{m=1}^{N} \alpha_{nm} = 1$.

FIRST APPROACH

$$a_{nm} = \frac{\exp(\mathbf{x}_n^{\mathrm{T}}\mathbf{x}_m)}{\sum_{m'=1}^{N} \exp(\mathbf{x}_n^{\mathrm{T}}\mathbf{x}_{m'})} \quad \leftarrow \quad \mathsf{Softmax}$$

$$\mathbf{Y} = \operatorname{Softmax}(\mathbf{X}\mathbf{X}^{\mathrm{T}})\mathbf{X} \quad \leftarrow \quad \mathsf{Self-Attention}$$

Goal

Define a transformation from tokens $\mathbf{x}_1, \dots, \mathbf{x}_N$ to output embeddings $\mathbf{y}_1, \dots, \mathbf{y}_N$, where each \mathbf{y}_n is a weighted combination of ALL \mathbf{x}_m , with weights reflecting the relevance of \mathbf{x}_m to \mathbf{y}_n .

Proposal

$$\mathbf{y}_n = \sum_{m=1}^N \alpha_{nm} \mathbf{x}_m,$$

where $\alpha_{nm} \geq 0$ are attention weights such that $\sum_{m=1}^{N} \alpha_{nm} = 1$.

FIRST APPROACH

$$a_{nm} = \frac{\exp(\mathbf{x}_n^{\mathrm{T}}\mathbf{x}_m)}{\sum_{m'=1}^{N} \exp(\mathbf{x}_n^{\mathrm{T}}\mathbf{x}_{m'})} \quad \leftarrow \quad \mathsf{Softmax}.$$

$$\mathbf{Y} = \operatorname{Softmax}(\mathbf{X}\mathbf{X}^{\mathrm{T}})\mathbf{X} \quad \leftarrow \quad \mathsf{Self-Attention}$$

Goal

Define a transformation from tokens $\mathbf{x}_1, \dots, \mathbf{x}_N$ to output embeddings $\mathbf{y}_1, \dots, \mathbf{y}_N$, where each \mathbf{y}_n is a weighted combination of ALL \mathbf{x}_m , with weights reflecting the relevance of \mathbf{x}_m to \mathbf{y}_n .

Proposal

$$\mathbf{y}_n = \sum_{m=1}^N \alpha_{nm} \mathbf{x}_m,$$

where $\alpha_{nm} \geq 0$ are attention weights such that $\sum_{m=1}^{N} \alpha_{nm} = 1$.

FIRST APPROACH

$$a_{nm} = \frac{\exp(\mathbf{x}_n^{\mathrm{T}} \mathbf{x}_m)}{\sum_{m'=1}^{N} \exp(\mathbf{x}_n^{\mathrm{T}} \mathbf{x}_{m'})} \quad \leftarrow \quad \mathsf{Softmax}.$$

$$\mathbf{Y} = \operatorname{Softmax}(\mathbf{X}\mathbf{X}^{\mathrm{T}})\mathbf{X} \quad \leftarrow \quad extstyle{\mathsf{Self-Attention}}$$

Goal

Define a transformation from tokens $\mathbf{x}_1, \dots, \mathbf{x}_N$ to output embeddings $\mathbf{y}_1, \dots, \mathbf{y}_N$, where each \mathbf{y}_n is a weighted combination of ALL \mathbf{x}_m , with weights reflecting the relevance of \mathbf{x}_m to \mathbf{y}_n .

Proposal

$$\mathbf{y}_n = \sum_{m=1}^N \alpha_{nm} \mathbf{x}_m,$$

where $\alpha_{nm} \geq 0$ are attention weights such that $\sum_{m=1}^{N} \alpha_{nm} = 1$.

FIRST APPROACH

$$a_{nm} = \frac{\exp(\mathbf{x}_n^{\mathrm{T}} \mathbf{x}_m)}{\sum_{m'=1}^{N} \exp(\mathbf{x}_n^{\mathrm{T}} \mathbf{x}_{m'})} \leftarrow \text{Softmax}.$$

$$\mathbf{Y} = \operatorname{Softmax}(\mathbf{X}\mathbf{X}^T)\mathbf{X} \quad \leftarrow \quad \text{Self-Attention}.$$

LIMITATION

The mapping $\{\mathbf{x}_n\} \mapsto \{\mathbf{y}_n\}$ lacks learnable parameters and thus cannot adapt to data. Additionally, all features in each \mathbf{x}_n contribute equally to attention weights, limiting the model's ability to focus selectively on informative features.

PARTIAL SOLUTION

Define

$$\tilde{\mathbf{X}} = \mathbf{X}\mathbf{U}, \quad \mathbf{U} \in \mathbb{R}^{D \times D},$$

where ${f U}$ is learnable, analogous to a 'layer' in standard neural networks. Then

$$\mathbf{Y} = \operatorname{Softmax}(\mathbf{X}\mathbf{U}\mathbf{U}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}})\mathbf{X}\mathbf{U}.$$

STILL A PROBLEM

Although this has much more flexibility, the matrix

$$\mathbf{X}\mathbf{U}\mathbf{U}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}$$

LIMITATION

The mapping $\{\mathbf{x}_n\} \mapsto \{\mathbf{y}_n\}$ lacks learnable parameters and thus cannot adapt to data. Additionally, all features in each \mathbf{x}_n contribute equally to attention weights, limiting the model's ability to focus selectively on informative features.

PARTIAL SOLUTION

Define

$$\tilde{\mathbf{X}} = \mathbf{X}\mathbf{U}, \quad \mathbf{U} \in \mathbb{R}^{D \times D}$$

where \mathbf{U} is learnable, analogous to a 'layer' in standard neural networks. Then

$$\mathbf{Y} = \operatorname{Softmax}(\mathbf{X}\mathbf{U}\mathbf{U}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}})\mathbf{X}\mathbf{U}.$$

Still a problem

Although this has much more flexibility, the matrix

$$XUU^{T}X^{T}$$

LIMITATION

The mapping $\{\mathbf{x}_n\} \mapsto \{\mathbf{y}_n\}$ lacks learnable parameters and thus cannot adapt to data. Additionally, all features in each \mathbf{x}_n contribute equally to attention weights, limiting the model's ability to focus selectively on informative features.

PARTIAL SOLUTION

Define

$$\tilde{\mathbf{X}} = \mathbf{X}\mathbf{U}, \quad \mathbf{U} \in \mathbb{R}^{D \times D},$$

where \mathbf{U} is learnable, analogous to a 'layer' in standard neural networks. Then

$$\mathbf{Y} = \operatorname{Softmax}(\mathbf{X}\mathbf{U}\mathbf{U}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}})\mathbf{X}\mathbf{U}.$$

Still a problem

Although this has much more flexibility, the matrix

$$\mathbf{X}\mathbf{U}\mathbf{U}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}$$

LIMITATION

The mapping $\{\mathbf{x}_n\} \mapsto \{\mathbf{y}_n\}$ lacks learnable parameters and thus cannot adapt to data. Additionally, all features in each \mathbf{x}_n contribute equally to attention weights, limiting the model's ability to focus selectively on informative features.

Partial Solution

Define

$$\tilde{\mathbf{X}} = \mathbf{X}\mathbf{U}, \quad \mathbf{U} \in \mathbb{R}^{D \times D},$$

where \mathbf{U} is learnable, analogous to a 'layer' in standard neural networks. Then

$$\mathbf{Y} = \operatorname{Softmax}(\mathbf{X}\mathbf{U}\mathbf{U}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}})\mathbf{X}\mathbf{U}.$$

STILL A PROBLEM

Although this has much more flexibility, the matrix

$$\mathbf{X}\mathbf{U}\mathbf{U}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}$$

SOLUTION

Vaswani et al. (2017) proposed defining separate query, key, and value matrices each having their own independent linear transformations:

$$\mathbf{Q} = \mathbf{X}\mathbf{W}^{(q)}, \quad \mathbf{K} = \mathbf{X}\mathbf{W}^{(k)}, \quad \mathbf{V} = \mathbf{X}\mathbf{W}^{(v)},$$

where $\mathbf{W}^{(\mathrm{q})}$, $\mathbf{W}^{(\mathrm{k})} \in \mathbb{R}^{D \times D_{\mathrm{k}}}$ and $\mathbf{W}^{(\mathrm{v})} \in \mathbb{R}^{D \times D_{\mathrm{v}}}$, where D_{v} governs the dimensionality of the output. Therefore

 $\mathbf{Y} = \operatorname{Softmax}(\mathbf{Q}\mathbf{K}^{T})\mathbf{V} \leftarrow \mathbf{Q}\mathbf{K}^{T}$ are the attention weights.

$$\begin{array}{|c|c|}
\hline
\mathbf{Y} & = & \text{Softmax} & \left\{ \begin{array}{|c|c|}
\hline
\mathbf{Q}\mathbf{K}^{\mathrm{T}} \\
\end{array} \right\} \times \begin{bmatrix} \mathbf{V} \\
\end{array}$$

$$N \times D_{\mathbf{v}} \qquad \qquad N \times D_{\mathbf{v}} \\$$

Figure: Illustration of the evaluation of the output from an attention layer given the query, key, and value matrices Q, K, and V, respectively.

SOLUTION

Vaswani et al. (2017) proposed defining separate query, key, and value matrices each having their own independent linear transformations:

$$\mathbf{Q} = \mathbf{X}\mathbf{W}^{(q)}, \quad \mathbf{K} = \mathbf{X}\mathbf{W}^{(k)}, \quad \mathbf{V} = \mathbf{X}\mathbf{W}^{(v)},$$

where $\mathbf{W}^{(q)}$, $\mathbf{W}^{(k)} \in \mathbb{R}^{D \times D_k}$ and $\mathbf{W}^{(v)} \in \mathbb{R}^{D \times D_v}$, where D_v governs the dimensionality of the output. Therefore

$$\mathbf{Y} = \operatorname{Softmax}(\mathbf{Q}\mathbf{K}^{T})\mathbf{V} \leftarrow \mathbf{Q}\mathbf{K}^{T}$$
 are the attention weights.

$$\begin{array}{|c|c|} \hline \mathbf{Y} & = & \mathrm{Softmax} & \left\{ \begin{array}{|c|c|} \hline \mathbf{Q}\mathbf{K}^{\mathrm{T}} \end{array} \right\} \times \begin{bmatrix} \mathbf{V} \\ \mathbf{V} \end{array} \\
N \times D_{\mathbf{V}} & N \times N & N \times D_{\mathbf{V}} \end{array}$$

Figure: Illustration of the evaluation of the output from an attention layer given the query, key, and value matrices Q, K, and V, respectively.

Final adjustment

To avoid vanishing gradients in softmax, scale the dot product of query and key vectors by $\sqrt{D_{\mathbf{k}}}$, yielding the output of the attention layer as:

$$\mathbf{Y} = \operatorname{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) \equiv \operatorname{Softmax}\left(rac{\mathbf{Q}\mathbf{K}^{\mathrm{T}}}{\sqrt{D_{\mathrm{k}}}}
ight)\mathbf{V}$$

Scaled dot-product self-attention

This structure constitutes a single attention head.

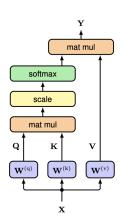


Figure: Information flow. Here 'mat mul' denotes matrix multiplication, and 'scale' refers to the normalization of the argument to the softmax using $\sqrt{D_{\mathbf{k}}}$.

Modeling multiple dependency patterns

To capture different types of relationships in the data simultaneously we replicate the attention mechanism into multiple heads.

Suppose we have H attention heads indexed by h = 1, ..., H of the form

$$\mathbf{H}_h = \operatorname{Attention}(\mathbf{Q}_h, \mathbf{K}_h, \mathbf{V}_h), \quad \mathbf{Q}_h = \mathbf{X} \mathbf{W}_h^{(q)}, \quad \mathbf{K}_h = \mathbf{X} \mathbf{W}_h^{(k)}, \quad \mathbf{V}_h = \mathbf{X} \mathbf{W}_h^{(v)}.$$

The heads are first concatenated into a single matrix, and the result is then linearly transformed using a matrix $\mathbf{W}^{(\circ)}$ to give a combined output in the form

$$\mathbf{Y}(\mathbf{X}) = \mathsf{Concat}(\mathbf{H}_1, \dots, \mathbf{H}_H) \mathbf{W}^{(\circ)}, \in \mathbb{R}^{N imes D_{\mathrm{v}}}.$$

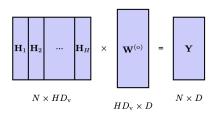


Figure: Network architecture for multi-head attention

Modeling multiple dependency patterns

To capture different types of relationships in the data simultaneously we replicate the attention mechanism into multiple heads.

Suppose we have H attention heads indexed by $h = 1, \ldots, H$ of the form

$$\mathbf{H}_h = \operatorname{Attention}(\mathbf{Q}_h, \mathbf{K}_h, \mathbf{V}_h), \quad \mathbf{Q}_h = \mathbf{X} \mathbf{W}_h^{(q)}, \quad \mathbf{K}_h = \mathbf{X} \mathbf{W}_h^{(k)}, \quad \mathbf{V}_h = \mathbf{X} \mathbf{W}_h^{(v)}.$$

The heads are first concatenated into a single matrix, and the result is then linearly transformed using a matrix $\mathbf{W}^{(\circ)}$ to give a combined output in the form

$$\mathbf{Y}(\mathbf{X}) = \mathsf{Concat}(\mathbf{H}_1, \dots, \mathbf{H}_H) \mathbf{W}^{(\circ)}, \in \mathbb{R}^{N \times D_{\mathrm{v}}}.$$

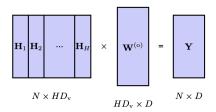


Figure: Network architecture for multi-head attention

Modeling multiple dependency patterns

To capture different types of relationships in the data simultaneously we replicate the attention mechanism into multiple heads.

Suppose we have H attention heads indexed by $h = 1, \dots, H$ of the form

$$\mathbf{H}_h = \operatorname{Attention}(\mathbf{Q}_h, \mathbf{K}_h, \mathbf{V}_h), \quad \mathbf{Q}_h = \mathbf{X}\mathbf{W}_h^{(q)}, \quad \mathbf{K}_h = \mathbf{X}\mathbf{W}_h^{(k)}, \quad \mathbf{V}_h = \mathbf{X}\mathbf{W}_h^{(v)}.$$

The heads are first concatenated into a single matrix, and the result is then linearly transformed using a matrix $\mathbf{W}^{(\circ)}$ to give a combined output in the form

$$\mathbf{Y}(\mathbf{X}) = \mathsf{Concat}(\mathbf{H}_1, \dots, \mathbf{H}_H) \mathbf{W}^{(\circ)}, \in \mathbb{R}^{N \times D_{\mathbf{v}}}.$$

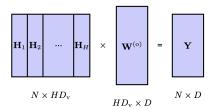


Figure: Network architecture for multi-head attention

Modeling multiple dependency patterns

To capture different types of relationships in the data simultaneously we replicate the attention mechanism into multiple heads.

Suppose we have H attention heads indexed by $h = 1, \dots, H$ of the form

$$\mathbf{H}_h = \operatorname{Attention}(\mathbf{Q}_h, \mathbf{K}_h, \mathbf{V}_h), \quad \mathbf{Q}_h = \mathbf{X}\mathbf{W}_h^{(q)}, \quad \mathbf{K}_h = \mathbf{X}\mathbf{W}_h^{(k)}, \quad \mathbf{V}_h = \mathbf{X}\mathbf{W}_h^{(v)}.$$

The heads are first concatenated into a single matrix, and the result is then linearly transformed using a matrix $\mathbf{W}^{(\circ)}$ to give a combined output in the form

$$\mathbf{Y}(\mathbf{X}) = \mathsf{Concat}(\mathbf{H}_1, \dots, \mathbf{H}_H) \mathbf{W}^{(\circ)}, \in \mathbb{R}^{N \times D_{\mathbf{V}}}.$$

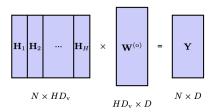


Figure: Network architecture for multi-head attention.

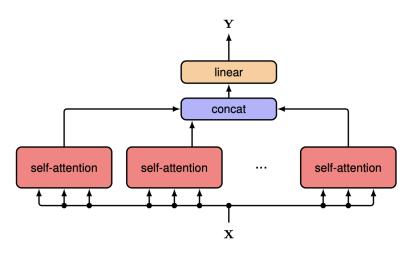


Figure: Information flow in a multi-head attention layer.

TRAINING IMPROVEMENTS

To improve training efficiency, the output is followed by a *residual connection* and a *layer normalization* (Ba, Kiros, and Hinton, 2016)

$$\mathbf{Z} = \mathsf{LayerNorm}(\mathbf{Y}(\mathbf{X}) + \mathbf{X}).$$

Still work to do

An MLP is added after the attention layer to break the linearity of the output and increase the expressive capabilities of the attention layer

$$\widetilde{\mathbf{X}} = \mathsf{LayerNorm}(\mathrm{MLP}(\mathbf{Z}) + \mathbf{Z}).$$

$$\widetilde{\mathbf{X}} = \mathrm{TF}_{\boldsymbol{\theta}}(\mathbf{X})$$



Figure: One layer of the transformer architecture. Here, 'add and norm' denotes a residual connection followed by layer normalization.

Training improvements

To improve training efficiency, the output is followed by a *residual connection* and a *layer normalization* (Ba, Kiros, and Hinton, 2016)

$$\mathbf{Z} = \mathsf{LayerNorm}(\mathbf{Y}(\mathbf{X}) + \mathbf{X}).$$

STILL WORK TO DO

An MLP is added after the attention layer to break the linearity of the output and increase the expressive capabilities of the attention layer

$$\widetilde{\mathbf{X}} = \mathsf{LayerNorm}(\mathrm{MLP}(\mathbf{Z}) + \mathbf{Z}).$$

$$\widetilde{\mathbf{X}} = \mathrm{TF}_{\boldsymbol{\theta}}(\mathbf{X})$$

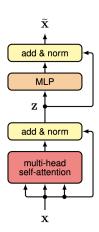


Figure: One layer of the transformer architecture. Here, 'add and norm' denotes a residual connection followed by layer normalization.

TRAINING IMPROVEMENTS

To improve training efficiency, the output is followed by a *residual connection* and a *layer normalization* (Ba, Kiros, and Hinton, 2016)

$$\mathbf{Z} = \mathsf{LayerNorm}(\mathbf{Y}(\mathbf{X}) + \mathbf{X}).$$

Still work to do

An MLP is added after the attention layer to break the linearity of the output and increase the expressive capabilities of the attention layer:

$$\widetilde{\mathbf{X}} = \mathsf{LayerNorm}(\mathsf{MLP}(\mathbf{Z}) + \mathbf{Z}).$$

$$\widetilde{\mathbf{X}} = \mathrm{TF}_{\boldsymbol{\theta}}(\mathbf{X})$$

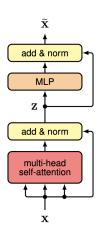


Figure: One layer of the transformer architecture. Here, 'add and norm' denotes a residual connection followed by layer normalization.

Training improvements

To improve training efficiency, the output is followed by a *residual connection* and a *layer normalization* (Ba, Kiros, and Hinton, 2016)

$$\mathbf{Z} = \mathsf{LayerNorm}(\mathbf{Y}(\mathbf{X}) + \mathbf{X}).$$

Still work to do

An MLP is added after the attention layer to break the linearity of the output and increase the expressive capabilities of the attention layer:

$$\widetilde{\mathbf{X}} = \mathsf{LayerNorm}(\mathrm{MLP}(\mathbf{Z}) + \mathbf{Z}).$$

$$\widetilde{\mathbf{X}} = \mathrm{TF}_{\boldsymbol{\theta}}(\mathbf{X})$$

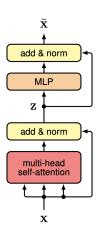


Figure: One layer of the transformer architecture. Here, 'add and norm' denotes a residual connection followed by layer normalization.

Training improvements

To improve training efficiency, the output is followed by a *residual connection* and a *layer normalization* (Ba, Kiros, and Hinton, 2016)

$$\mathbf{Z} = \mathsf{LayerNorm}(\mathbf{Y}(\mathbf{X}) + \mathbf{X}).$$

Still work to do

An MLP is added after the attention layer to break the linearity of the output and increase the expressive capabilities of the attention layer:

$$\widetilde{\mathbf{X}} = \mathsf{LayerNorm}(\mathsf{MLP}(\mathbf{Z}) + \mathbf{Z}).$$

$$\widetilde{\mathbf{X}} = \mathrm{TF}_{\boldsymbol{\theta}}(\mathbf{X})$$

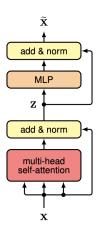


Figure: One layer of the transformer architecture. Here, 'add and norm' denotes a residual connection followed by layer normalization.

Garg et al. (2022) show empirically that standard Transformers can be trained from scratch to perform in-context learning of linear functions.

NOTATION

Let $\mathcal X$ be the input feature space, and $\mathcal Y$ be the output/label space, such that $\mathcal F=\{f:\mathcal X\to\mathcal Y\}$ is class of functions between this spaces.

IN-CONTEXT LEARNING SETTING

- 1) Sample $f \sim \mathsf{P}_{\mathcal{F}}$ and N i.i.d. inputs tokens $\mathbf{x}_1, \dots, \mathbf{x}_N \sim \mathsf{P}_{\mathcal{X}}$.
- **2)** Generate labels $\mathbf{y}_i = f(\mathbf{x}_i) \in \mathcal{Y}$ for $i=1,\ldots,N$, obtaining $\{(\mathbf{x}_i,\mathbf{y}_i)\}_{i=1}^N$
- 3) Define a length-i prompt as

$$\mathbf{X}_{\mathsf{prompt}}^{(i)} = (\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{x}_{i-1}, \mathbf{y}_{i-1}, \mathbf{x}_i)^{\mathrm{T}},$$

such that the model prediction is $\hat{\mathbf{y}}_i = \mathbf{W} \operatorname{TF}_{\boldsymbol{\theta}}(\mathbf{X}_{\mathsf{prompt}}^{(i)}) \in \mathcal{Y}, \ i = 1, \dots, N.$

4) Training by minimizing the expected loss

$$\min_{\boldsymbol{\theta}} \underset{\mathbf{x}_1, \dots, \mathbf{x}_n \sim \mathsf{P}_{\mathcal{X}}}{\mathbb{E}} \left[\frac{1}{N} \sum_{i=1}^{N} \ell(\hat{\mathbf{y}}_i, \mathbf{y}_i) \right],$$

Garg et al. (2022) show empirically that standard Transformers can be trained from scratch to perform in-context learning of linear functions.

NOTATION

Let $\mathcal X$ be the input feature space, and $\mathcal Y$ be the output/label space, such that $\mathcal F=\{f:\mathcal X\to\mathcal Y\}$ is class of functions between this spaces.

IN-CONTEXT LEARNING SETTING

- 1) Sample $f \sim \mathsf{P}_{\mathcal{F}}$ and N i.i.d. inputs tokens $\mathbf{x}_1, \dots, \mathbf{x}_N \sim \mathsf{P}_{\mathcal{X}}$.
- **2)** Generate labels $\mathbf{y}_i = f(\mathbf{x}_i) \in \mathcal{Y}$ for $i=1,\ldots,N$, obtaining $\{(\mathbf{x}_i,\mathbf{y}_i)\}_{i=1}^N$
- 3) Define a length-i prompt as

$$\mathbf{X}_{\mathsf{prompt}}^{(i)} = (\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{x}_{i-1}, \mathbf{y}_{i-1}, \mathbf{x}_i)^{\mathrm{T}},$$

such that the model prediction is $\hat{\mathbf{y}}_i = \mathbf{W} \operatorname{TF}_{\boldsymbol{\theta}}(\mathbf{X}_{\mathsf{prompt}}^{(i)}) \in \mathcal{Y}, \ i = 1, \dots, N.$

4) Training by minimizing the expected loss

$$\min_{\boldsymbol{\theta}} \underset{\mathbf{x}_1, \dots, \mathbf{x}_n \sim \mathsf{P}_{\mathcal{X}}}{\mathbb{E}} \left[\frac{1}{N} \sum_{i=1}^{N} \ell(\hat{\mathbf{y}}_i, \mathbf{y}_i) \right],$$

Garg et al. (2022) show empirically that standard Transformers can be trained from scratch to perform in-context learning of linear functions.

NOTATION

Let $\mathcal X$ be the input feature space, and $\mathcal Y$ be the output/label space, such that $\mathcal F=\{f:\mathcal X\to\mathcal Y\}$ is class of functions between this spaces.

IN-CONTEXT LEARNING SETTING

- 1) Sample $f \sim \mathsf{P}_{\mathcal{F}}$ and N i.i.d. inputs tokens $\mathbf{x}_1, \dots, \mathbf{x}_N \sim \mathsf{P}_{\mathcal{X}}$.
- 2) Generate labels $\mathbf{y}_i = f(\mathbf{x}_i) \in \mathcal{Y}$ for i = 1, ..., N, obtaining $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$
- 3) Define a length-i prompt as

$$\mathbf{X}_{\mathsf{prompt}}^{(i)} = (\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{x}_{i-1}, \mathbf{y}_{i-1}, \mathbf{x}_i)^{\mathrm{T}},$$

such that the model prediction is $\hat{\mathbf{y}}_i = \mathbf{W} \operatorname{TF}_{\theta}(\mathbf{X}_{\mathsf{prompt}}^{(i)}) \in \mathcal{Y}, i = 1, \dots, N.$

4) Training by minimizing the expected loss

$$\min_{\boldsymbol{\theta}} \underset{\mathbf{x}_1, \dots, \mathbf{x}_n \sim \mathsf{P}_{\mathcal{X}}}{\mathbb{E}} \left[\frac{1}{N} \sum_{i=1}^{N} \ell(\hat{\mathbf{y}}_i, \mathbf{y}_i) \right]$$

Garg et al. (2022) show empirically that standard Transformers can be trained from scratch to perform in-context learning of linear functions.

NOTATION

Let $\mathcal X$ be the input feature space, and $\mathcal Y$ be the output/label space, such that $\mathcal F=\{f:\mathcal X\to\mathcal Y\}$ is class of functions between this spaces.

IN-CONTEXT LEARNING SETTING

- 1) Sample $f \sim P_{\mathcal{F}}$ and N i.i.d. inputs tokens $\mathbf{x}_1, \dots, \mathbf{x}_N \sim P_{\mathcal{X}}$.
- 2) Generate labels $\mathbf{y}_i = f(\mathbf{x}_i) \in \mathcal{Y}$ for i = 1, ..., N, obtaining $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$
- 3) Define a length-i prompt as

$$\mathbf{X}_{\mathsf{prompt}}^{(i)} = (\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{x}_{i-1}, \mathbf{y}_{i-1}, \mathbf{x}_i)^{\mathrm{T}},$$

such that the model prediction is $\hat{\mathbf{y}}_i = \mathbf{W} \operatorname{TF}_{\boldsymbol{\theta}}(\mathbf{X}_{\mathsf{prompt}}^{(i)}) \in \mathcal{Y}, \ i = 1, \dots, N$

4) Training by minimizing the expected loss

$$\min_{\boldsymbol{\theta}} \underset{\mathbf{x}_1, \dots, \mathbf{x}_n \sim \mathsf{P}_{\mathcal{X}}}{\mathbb{E}} \left[\frac{1}{N} \sum_{i=1}^{N} \ell(\hat{\mathbf{y}}_i, \mathbf{y}_i) \right]$$

Garg et al. (2022) show empirically that standard Transformers can be trained from scratch to perform in-context learning of linear functions.

NOTATION

Let $\mathcal X$ be the input feature space, and $\mathcal Y$ be the output/label space, such that $\mathcal F=\{f:\mathcal X\to\mathcal Y\}$ is class of functions between this spaces.

IN-CONTEXT LEARNING SETTING

- 1) Sample $f \sim P_{\mathcal{F}}$ and N i.i.d. inputs tokens $\mathbf{x}_1, \dots, \mathbf{x}_N \sim P_{\mathcal{X}}$.
- 2) Generate labels $\mathbf{y}_i = f(\mathbf{x}_i) \in \mathcal{Y}$ for i = 1, ..., N, obtaining $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$.
- 3) Define a length-i prompt as

$$\mathbf{X}_{\mathsf{prompt}}^{(i)} = (\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{x}_{i-1}, \mathbf{y}_{i-1}, \mathbf{x}_i)^{\mathrm{T}},$$

such that the model prediction is $\hat{\mathbf{y}}_i = \mathbf{W} \operatorname{TF}_{\boldsymbol{\theta}}(\mathbf{X}_{\mathsf{prompt}}^{(i)}) \in \mathcal{Y}, \ i = 1, \dots, N$

4) Training by minimizing the expected loss

$$\min_{\boldsymbol{\theta}} \underset{\mathbf{x}_{1},...,\mathbf{x}_{n} \sim \mathsf{P}_{\mathcal{X}}}{\mathbb{E}} \left[\frac{1}{N} \sum_{i=1}^{N} \ell(\hat{\mathbf{y}}_{i}, \mathbf{y}_{i}) \right]$$

where ℓ is an appropriate loss function.

Garg et al. (2022) show empirically that standard Transformers can be trained from scratch to perform in-context learning of linear functions.

NOTATION

Let $\mathcal X$ be the input feature space, and $\mathcal Y$ be the output/label space, such that $\mathcal F=\{f:\mathcal X\to\mathcal Y\}$ is class of functions between this spaces.

IN-CONTEXT LEARNING SETTING

- 1) Sample $f \sim P_{\mathcal{F}}$ and N i.i.d. inputs tokens $\mathbf{x}_1, \dots, \mathbf{x}_N \sim P_{\mathcal{X}}$.
- 2) Generate labels $\mathbf{y}_i = f(\mathbf{x}_i) \in \mathcal{Y}$ for i = 1, ..., N, obtaining $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$.
- 3) Define a length-i prompt as

$$\mathbf{X}_{\mathsf{prompt}}^{(i)} = (\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{x}_{i-1}, \mathbf{y}_{i-1}, \mathbf{x}_i)^{\mathrm{T}},$$

such that the model prediction is $\hat{\mathbf{y}}_i = \mathbf{W} \operatorname{TF}_{\boldsymbol{\theta}}(\mathbf{X}_{\mathsf{prompt}}^{(i)}) \in \mathcal{Y}, \ i = 1, \dots, N.$

4) Training by minimizing the expected loss

$$\min_{\boldsymbol{\theta}} \underset{\substack{\mathbf{x}_1, \dots, \mathbf{x}_n \sim \mathsf{P}_{\mathcal{X}} \\ f \sim \mathsf{P}_{\mathcal{T}}}}{\mathbb{E}} \left[\frac{1}{N} \sum_{i=1}^{N} \ell(\hat{\mathbf{y}}_i, \mathbf{y}_i) \right]$$

where ℓ is an appropriate loss function.

Garg et al. (2022) show empirically that standard Transformers can be trained from scratch to perform in-context learning of linear functions.

NOTATION

Let $\mathcal X$ be the input feature space, and $\mathcal Y$ be the output/label space, such that $\mathcal F=\{f:\mathcal X\to\mathcal Y\}$ is class of functions between this spaces.

IN-CONTEXT LEARNING SETTING

- 1) Sample $f \sim P_{\mathcal{F}}$ and N i.i.d. inputs tokens $\mathbf{x}_1, \dots, \mathbf{x}_N \sim P_{\mathcal{X}}$.
- 2) Generate labels $\mathbf{y}_i = f(\mathbf{x}_i) \in \mathcal{Y}$ for $i = 1, \dots, N$, obtaining $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$.
- 3) Define a length-i prompt as

$$\mathbf{X}_{\mathsf{prompt}}^{(i)} = (\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{x}_{i-1}, \mathbf{y}_{i-1}, \mathbf{x}_i)^T,$$

such that the model prediction is $\hat{\mathbf{y}}_i = \mathbf{W} \operatorname{TF}_{\boldsymbol{\theta}}(\mathbf{X}_{\mathsf{prompt}}^{(i)}) \in \mathcal{Y}, \ i = 1, \dots, N.$

4) Training by minimizing the expected loss

$$\min_{\boldsymbol{\theta}} \ \underset{\boldsymbol{\mathbf{x}}_{1}, \dots, \boldsymbol{\mathbf{x}}_{n} \sim \mathsf{P}_{\mathcal{X}}}{\mathbb{E}} \left[\frac{1}{N} \sum_{i=1}^{N} \ell(\hat{\mathbf{y}}_{i}, \mathbf{y}_{i}) \right],$$

where ℓ is an appropriate loss function.

Example (Linear functions)

Consider the class of linear functions

$$\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}, \, \mathbf{w} \in \mathbb{R}^d \}$$

Sample

$$\mathbf{w} \sim \mathsf{P}_{\mathcal{F}} := \mathsf{N}_d(\mathbf{0}, \mathbf{I}_d), \quad \mathbf{x}_i \overset{\mathsf{i.i.d.}}{\sim} \mathsf{P}_{\mathcal{X}} := \mathsf{N}_d(\mathbf{0}, \mathbf{I}_d), \quad i = 1, \dots, N,$$

independently. For each f determined by \mathbf{w} , generate training pairs

$$\mathbf{v}_i = f(\mathbf{x}_i) = \mathbf{w}^{\mathrm{T}} \mathbf{x}_i.$$

Then, train the Transformer to predict $\hat{\mathbf{y}}_i = \mathbf{W} \, \mathrm{TF}_{m{ heta}}(\mathbf{X}_{\mathsf{prompt}}^{(i)})$ where

$$\mathbf{X}_{\mathsf{prompt}}^{(i)} = (\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{x}_{i-1}, \mathbf{y}_{i-1}, \mathbf{x}_i),$$

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{\substack{\mathbf{x}_1, \dots, \mathbf{x}_N \sim \mathbf{N}_d(\mathbf{0}, \mathbf{I}_d) \\ f \sim \mathbf{N}_d(\mathbf{0}, \mathbf{I}_d)}} \left[\frac{1}{N} \sum_{i=1}^{N} (\hat{\mathbf{y}}_i - \mathbf{y}_i)^2 \right]$$

Example (Linear functions)

Consider the class of linear functions

$$\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x}, \, \mathbf{w} \in \mathbb{R}^d \}.$$

Sample

$$\mathbf{w} \sim \mathsf{P}_{\mathcal{F}} := \mathsf{N}_d(\mathbf{0}, \mathbf{I}_d), \quad \mathbf{x}_i \overset{\mathsf{i.i.d.}}{\sim} \mathsf{P}_{\mathcal{X}} := \mathsf{N}_d(\mathbf{0}, \mathbf{I}_d), \quad i = 1, \dots, N,$$

independently. For each f determined by \mathbf{w} , generate training pairs

$$\mathbf{y}_i = f(\mathbf{x}_i) = \mathbf{w}^{\mathrm{T}} \mathbf{x}_i$$

Then, train the Transformer to predict $\hat{\mathbf{y}}_i = \mathbf{W} \operatorname{TF}_{\boldsymbol{\theta}}(\mathbf{X}_{\mathsf{prompt}}^{(i)})$ where

$$\mathbf{X}_{\mathsf{prompt}}^{(i)} = (\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{x}_{i-1}, \mathbf{y}_{i-1}, \mathbf{x}_i)$$

$$\min_{\boldsymbol{\theta}} \underset{\mathbf{x}_1, \dots, \mathbf{x}_N \sim \mathbf{N}_d(\mathbf{0}, \mathbf{I}_d)}{\mathbb{E}} \left[\frac{1}{N} \sum_{i=1}^{N} (\hat{\mathbf{y}}_i - \mathbf{y}_i)^2 \right]$$

Example (Linear functions)

Consider the class of linear functions

$$\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x}, \, \mathbf{w} \in \mathbb{R}^d \}.$$

Sample

$$\mathbf{w} \sim \mathsf{P}_{\mathcal{F}} := \mathsf{N}_d(\mathbf{0}, \mathbf{I}_d), \quad \mathbf{x}_i \overset{\mathsf{i.i.d.}}{\sim} \mathsf{P}_{\mathcal{X}} := \mathsf{N}_d(\mathbf{0}, \mathbf{I}_d), \quad i = 1, \dots, N,$$

independently. For each f determined by w, generate training pairs

$$\mathbf{y}_i = f(\mathbf{x}_i) = \mathbf{w}^{\mathrm{T}} \mathbf{x}_i$$

Then, train the Transformer to predict $\hat{\mathbf{y}}_i = \mathbf{W} \, ext{TF}_{m{ heta}}(\mathbf{X}_{\mathsf{prompt}}^{(i)})$ where

$$\mathbf{X}_{\mathsf{prompt}}^{(i)} = (\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{x}_{i-1}, \mathbf{y}_{i-1}, \mathbf{x}_i)$$

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{\substack{\mathbf{x}_1, \dots, \mathbf{x}_N \sim \mathbf{N}_d(\mathbf{0}, \mathbf{I}_d) \\ f \sim \mathbf{N}_d(\mathbf{0}, \mathbf{I}_d)}} \left[\frac{1}{N} \sum_{i=1}^{N} (\hat{\mathbf{y}}_i - \mathbf{y}_i)^2 \right]$$

Example (Linear functions)

Consider the class of linear functions

$$\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x}, \, \mathbf{w} \in \mathbb{R}^d \}.$$

Sample

$$\mathbf{w} \sim \mathsf{P}_{\mathcal{F}} := \mathsf{N}_d(\mathbf{0}, \mathbf{I}_d), \quad \mathbf{x}_i \overset{\mathsf{i.i.d.}}{\sim} \mathsf{P}_{\mathcal{X}} := \mathsf{N}_d(\mathbf{0}, \mathbf{I}_d), \quad i = 1, \dots, N,$$

independently. For each f determined by w, generate training pairs

$$\mathbf{y}_i = f(\mathbf{x}_i) = \mathbf{w}^{\mathrm{T}} \mathbf{x}_i.$$

Then, train the Transformer to predict $\hat{\mathbf{y}}_i = \mathbf{W} \, \mathrm{TF}_{m{ heta}}(\mathbf{X}_{\mathsf{prompt}}^{(i)})$ where

$$\mathbf{X}_{\mathsf{prompt}}^{(i)} = (\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{x}_{i-1}, \mathbf{y}_{i-1}, \mathbf{x}_i)$$

$$\min_{\theta} \underset{\substack{\mathbf{x}_1, \dots, \mathbf{x}_N \sim \mathbf{N}_d(\mathbf{0}, \mathbf{I}_d) \\ f \sim \mathbf{N}_d(\mathbf{0}, \mathbf{I}_d)}}{\mathbb{E}} \left[\frac{1}{N} \sum_{i=1}^N (\hat{\mathbf{y}}_i - \mathbf{y}_i)^2 \right]$$

Example (Linear functions)

Consider the class of linear functions

$$\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x}, \, \mathbf{w} \in \mathbb{R}^d \}.$$

Sample

$$\mathbf{w} \sim \mathsf{P}_{\mathcal{F}} := \mathsf{N}_d(\mathbf{0}, \mathbf{I}_d), \quad \mathbf{x}_i \overset{\mathsf{i.i.d.}}{\sim} \mathsf{P}_{\mathcal{X}} := \mathsf{N}_d(\mathbf{0}, \mathbf{I}_d), \quad i = 1, \dots, N,$$

independently. For each f determined by w, generate training pairs

$$\mathbf{y}_i = f(\mathbf{x}_i) = \mathbf{w}^{\mathrm{T}} \mathbf{x}_i.$$

Then, train the Transformer to predict $\hat{\mathbf{y}}_i = \mathbf{W} \, \mathrm{TF}_{m{ heta}}(\mathbf{X}_{\mathsf{prompt}}^{(i)})$ where

$$\mathbf{X}_{\mathsf{prompt}}^{(i)} = (\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{x}_{i-1}, \mathbf{y}_{i-1}, \mathbf{x}_i),$$

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{x}_1, \dots, \mathbf{x}_N \sim N_d(\mathbf{0}, \mathbf{I}_d)} \left[\frac{1}{N} \sum_{i=1}^N (\hat{\mathbf{y}}_i - \mathbf{y}_i)^2 \right].$$

In this setting, the Transformer learns to approximate the least squares estimator.

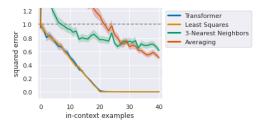


Figure: Normalized squared error of the Transformer as a function of the number of in-context examples (Garg et al., 2022).

Bai et al. (2023) show¹ that Transformers can implement a broad class of standard ML algorithms in context, such as least squares, Ridge regression, Lasso, convex risk minimization for GLMs.

¹Possibly the most mathematically formal paper on this topic

In this setting, the Transformer learns to approximate the least squares estimator.

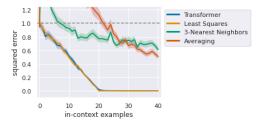


Figure: Normalized squared error of the Transformer as a function of the number of in-context examples (Garg et al., 2022).

Bai et al. (2023) show¹ that Transformers can implement a broad class of standard ML algorithms in context, such as least squares, Ridge regression, Lasso, convex risk minimization for GLMs.

¹Possibly the most mathematically formal paper on this topic.

Large Language Models

Decoder transformers

These can be used as generative models that create output sequences of tokens. we will focus on a class of models called GPT which stands for generative pre-trained transformer.

Goai

Construct an autoregressive model of the form defined by

$$p(\mathbf{x}_1, \dots, \mathbf{x}_N) = \prod_{n=1}^N p(\mathbf{x}_n \mid \mathbf{x}_{1:n-1}), \quad \mathbf{x}_{1:n-1} = (\mathbf{x}_1, \dots, \mathbf{x}_{n-1})$$

where conditional distributions $p(\mathbf{x}_n \mid \mathbf{x}_{1:n-1})$ are expressed using a Transformer neural network that is learned from data.

TDEA

$$\mathbf{x}_1, \dots, \mathbf{x}_N \overset{\mathsf{Transformer layers}}{\Rightarrow} \widetilde{\mathbf{x}}_1, \dots, \widetilde{\mathbf{x}}_N$$

Each output needs to represent a probability distribution over the class of tokens

$$\mathbf{Y} = \operatorname{Softmax}(\widetilde{\mathbf{X}}\mathbf{W}^{(p)}), \quad \mathbf{W}^{(p)} \in \mathbb{R}^{D \times K}$$

Large Language Models

Decoder transformers

These can be used as generative models that create output sequences of tokens. we will focus on a class of models called GPT which stands for generative pre-trained transformer.

GOAL

Construct an autoregressive model of the form defined by

$$p(\mathbf{x}_1, \dots, \mathbf{x}_N) = \prod_{n=1}^{N} p(\mathbf{x}_n \mid \mathbf{x}_{1:n-1}), \quad \mathbf{x}_{1:n-1} = (\mathbf{x}_1, \dots, \mathbf{x}_{n-1}),$$

where conditional distributions $p(\mathbf{x}_n \mid \mathbf{x}_{1:n-1})$ are expressed using a Transformer neural network that is learned from data.

IDEA

$$\mathbf{x}_1, \dots, \mathbf{x}_N \overset{\mathsf{Transformer layers}}{\Rightarrow} \widetilde{\mathbf{x}}_1, \dots, \widetilde{\mathbf{x}}_N$$

Each output needs to represent a probability distribution over the class of tokens

$$\mathbf{Y} = \text{Softmax}(\widetilde{\mathbf{X}}\mathbf{W}^{(\text{p})}), \quad \mathbf{W}^{(\text{p})} \in \mathbb{R}^{D \times K}$$

Large Language Models

Decoder transformers

These can be used as generative models that create output sequences of tokens. we will focus on a class of models called GPT which stands for generative pre-trained transformer.

Goal

Construct an autoregressive model of the form defined by

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \prod_{n=1}^N p(\mathbf{x}_n \mid \mathbf{x}_{1:n-1}), \quad \mathbf{x}_{1:n-1} = (\mathbf{x}_1,\ldots,\mathbf{x}_{n-1}),$$

where conditional distributions $p(\mathbf{x}_n \mid \mathbf{x}_{1:n-1})$ are expressed using a Transformer neural network that is learned from data.

IDEA

$$\mathbf{x}_1, \dots, \mathbf{x}_N \quad \stackrel{\mathsf{Transformer layers}}{\Rightarrow} \quad \widetilde{\mathbf{x}}_1, \dots, \widetilde{\mathbf{x}}_N,$$

Each output needs to represent a probability distribution over the class of tokens:

$$\mathbf{Y} = \operatorname{Softmax}(\widetilde{\mathbf{X}}\mathbf{W}^{(p)}), \quad \mathbf{W}^{(p)} \in \mathbb{R}^{D \times K}.$$

EMBEDDING AND POSITIONAL ENCODING

We begin by defining a dictionary

$$\mathcal{V} = \{w_1, w_2, \dots, w_K\},\$$

which is a fixed, finite set of words indexed from 1 to K. A word v_i is mapped to an index in the dictionary using a tokenization function $\tau: \mathcal{V} \to \{1, \dots, K\}$, such that

$$\mathbf{v}(\mathbf{v}_i) = k_i$$
 with $\mathbf{v}_i = w_{k_i}$.

This index is then used to construct a **one-hot encoded vector** $\mathbf{o}_i \in \{0,1\}^K$, where the k_i -th component is set to 1 and all others are 0.

$$\mathbf{x}_i = \mathbf{E}\mathbf{o}_i + \mathbf{r}_i$$

EMBEDDING AND POSITIONAL ENCODING

We begin by defining a dictionary

$$\mathcal{V} = \{w_1, w_2, \dots, w_K\},\$$

which is a fixed, finite set of words indexed from 1 to K. A word \mathbf{v}_i is mapped to an index in the dictionary using a tokenization function $\tau: \mathcal{V} \to \{1, \dots, K\}$, such that

$$\tau(\mathbf{v}_i) = k_i$$
 with $\mathbf{v}_i = w_{k_i}$.

This index is then used to construct a one-hot encoded vector $\mathbf{o}_i \in \{0,1\}^K$, where the k_i -th component is set to 1 and all others are 0.

$$\mathbf{x}_i = \mathbf{Eo}_i + \mathbf{r}_i$$

Embedding and positional encoding

We begin by defining a dictionary

$$\mathcal{V} = \{w_1, w_2, \dots, w_K\},\$$

which is a fixed, finite set of words indexed from 1 to K. A word \mathbf{v}_i is mapped to an index in the dictionary using a tokenization function $\tau: \mathcal{V} \to \{1, \dots, K\}$, such that

$$\tau(\mathbf{v}_i) = k_i$$
 with $\mathbf{v}_i = w_{k_i}$.

This index is then used to construct a **one-hot encoded vector** $\mathbf{o}_i \in \{0,1\}^K$, where the k_i -th component is set to 1 and all others are 0.

$$\mathbf{x}_i = \mathbf{Eo}_i + \mathbf{r}_i$$

EMBEDDING AND POSITIONAL ENCODING

We begin by defining a dictionary

$$\mathcal{V} = \{w_1, w_2, \dots, w_K\},\$$

which is a fixed, finite set of words indexed from 1 to K. A word \mathbf{v}_i is mapped to an index in the dictionary using a tokenization function $\tau: \mathcal{V} \to \{1, \dots, K\}$, such that

$$\tau(\mathbf{v}_i) = k_i$$
 with $\mathbf{v}_i = w_{k_i}$.

This index is then used to construct a **one-hot encoded vector** $\mathbf{o}_i \in \{0,1\}^K$, where the k_i -th component is set to 1 and all others are 0.

$$\mathbf{x}_i = \mathbf{E}\mathbf{o}_i + \mathbf{r}_i.$$

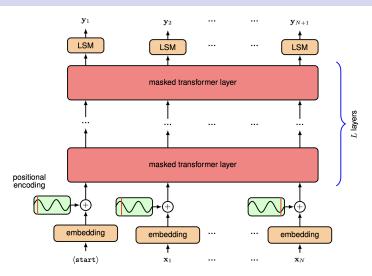


Figure: Architecture of a GPT decoder transformer network. Here 'LSM' stands for linear-softmax and denotes a linear transformation whose learnable parameters are shared across the token positions, followed by a softmax activation function.

How do we apply GPT to generate sequences of extreme events?²

- Let $(X_1, \ldots, X_d) \in \mathcal{X}^d$ be a chain of extreme events, e.g. $\mathcal{X} = \mathbb{R}_+$.
- ▶ Define a finite partition $\{\mathcal{C}_k\}_{k=1}^K$ of \mathcal{X} , and a one-hot tokenization function $\tau:\mathcal{X}\to\{0,1\}^K$ defined as

$$\tau(X_i) = (I(X_i \in \mathcal{C}_1), \dots, I(X_i \in \mathcal{C}_K)), \quad i = 1, \dots, d$$

▶ Each token is then projected into an embedding space using a learnable matrix $\mathbf{E} \in \mathbb{R}^{D \times K}$, positional encoding \mathbf{r}_i and extremal encoding³ are added

$$\mathbf{s}_i = \mathbf{E}\tau(X_i) + \mathbf{r}_i + \mathbf{e}_i.$$

$$P(X_1 \in C_{k_1}, \dots, X_d \in C_{k_d}) = \prod_{i=1}^d P(X_i \in C_{k_i} \mid X_{1:i-1})$$

²Ongoing work with Miguel de Carvalho and Ronny Vallejos.

e.g. based on extreme quantile regression models

How do we apply GPT to generate sequences of extreme events?²

- Let $(X_1, \ldots, X_d) \in \mathcal{X}^d$ be a chain of extreme events, e.g. $\mathcal{X} = \mathbb{R}_+$.
- ▶ Define a finite partition $\{\mathcal{C}_k\}_{k=1}^K$ of \mathcal{X} , and a one-hot tokenization function $\tau:\mathcal{X}\to\{0,1\}^K$ defined as

$$\tau(X_i) = (I(X_i \in \mathcal{C}_1), \dots, I(X_i \in \mathcal{C}_K)), \quad i = 1, \dots, d.$$

▶ Each token is then projected into an embedding space using a learnable matrix $\mathbf{E} \in \mathbb{R}^{D \times K}$, positional encoding \mathbf{r}_i and extremal encoding³ are added

$$\mathbf{s}_i = \mathbf{E}\tau(X_i) + \mathbf{r}_i + \mathbf{e}_i.$$

$$P(X_1 \in C_{k_1}, \dots, X_d \in C_{k_d}) = \prod_{i=1}^d P(X_i \in C_{k_i} \mid X_{1:i-1}).$$

²Ongoing work with Miguel de Carvalho and Ronny Vallejos.

e.g. based on extreme quantile regression models

How do we apply GPT to generate sequences of extreme events?²

- ▶ Let $(X_1, ..., X_d) \in \mathcal{X}^d$ be a chain of extreme events, e.g. $\mathcal{X} = \mathbb{R}_+$.
- ▶ Define a finite partition $\{\mathcal{C}_k\}_{k=1}^K$ of \mathcal{X} , and a one-hot tokenization function $\tau: \mathcal{X} \to \{0,1\}^K$ defined as

$$\tau(X_i) = (I(X_i \in \mathcal{C}_1), \dots, I(X_i \in \mathcal{C}_K)), \quad i = 1, \dots, d.$$

▶ Each token is then projected into an embedding space using a learnable matrix $\mathbf{E} \in \mathbb{R}^{D \times K}$, positional encoding \mathbf{r}_i and extremal encoding³ are added

$$\mathbf{s}_i = \mathbf{E}\tau(X_i) + \mathbf{r}_i + \mathbf{e}_i.$$

$$P(X_1 \in C_{k_1}, \dots, X_d \in C_{k_d}) = \prod_{i=1}^d P(X_i \in C_{k_i} \mid X_{1:i-1})$$

²Ongoing work with Miguel de Carvalho and Ronny Vallejos.

e.g. based on extreme quantile regression models

How do we apply GPT to generate sequences of extreme events?²

- ▶ Let $(X_1, ..., X_d) \in \mathcal{X}^d$ be a chain of extreme events, e.g. $\mathcal{X} = \mathbb{R}_+$.
- ▶ Define a finite partition $\{\mathcal{C}_k\}_{k=1}^K$ of \mathcal{X} , and a one-hot tokenization function $\tau: \mathcal{X} \to \{0,1\}^K$ defined as

$$\tau(X_i) = (I(X_i \in \mathcal{C}_1), \dots, I(X_i \in \mathcal{C}_K)), \quad i = 1, \dots, d.$$

Each token is then projected into an embedding space using a learnable matrix $\mathbf{E} \in \mathbb{R}^{D \times K}$, positional encoding \mathbf{r}_i and extremal encoding³ are added

$$\mathbf{s}_i = \mathbf{E}\tau(X_i) + \mathbf{r}_i + \mathbf{e}_i.$$

$$P(X_1 \in C_{k_1}, \dots, X_d \in C_{k_d}) = \prod_{i=1}^d P(X_i \in C_{k_i} \mid X_{1:i-1})$$

²Ongoing work with Miguel de Carvalho and Ronny Vallejos.

³e.g. based on extreme quantile regression models.

How do we apply GPT to generate sequences of extreme events?²

- ▶ Let $(X_1, ..., X_d) \in \mathcal{X}^d$ be a chain of extreme events, e.g. $\mathcal{X} = \mathbb{R}_+$.
- ▶ Define a finite partition $\{\mathcal{C}_k\}_{k=1}^K$ of \mathcal{X} , and a one-hot tokenization function $\tau: \mathcal{X} \to \{0,1\}^K$ defined as

$$\tau(X_i) = (I(X_i \in \mathcal{C}_1), \dots, I(X_i \in \mathcal{C}_K)), \quad i = 1, \dots, d.$$

▶ Each token is then projected into an embedding space using a learnable matrix $\mathbf{E} \in \mathbb{R}^{D \times K}$, positional encoding \mathbf{r}_i and extremal encoding³ are added

$$\mathbf{s}_i = \mathbf{E}\tau(X_i) + \mathbf{r}_i + \mathbf{e}_i.$$

$$P(X_1 \in C_{k_1}, \dots, X_d \in C_{k_d}) = \prod_{i=1}^d P(X_i \in C_{k_i} \mid X_{1:i-1}).$$

²Ongoing work with Miguel de Carvalho and Ronny Vallejos.

³e.g. based on extreme quantile regression models.

How do we apply GPT to generate sequences of extreme events?

Each conditional $P(X_i \in \mathcal{C}_k \mid X_{i-L:i-1})$ is approximated by a **decoder Transformer** 4 $\mathrm{TF}_{\boldsymbol{\theta}}$, which maps the input embeddings $(\mathbf{s}_{i-L}, \ldots, \mathbf{s}_{i-1})$:

$$\widetilde{\mathbf{S}}_i = \mathrm{TF}_{\boldsymbol{\theta}}(\mathbf{S}_i), \quad \text{with } \mathbf{S}_i = (\mathbf{s}_{i-L}, \dots, \mathbf{s}_{i-1})^{\mathrm{T}},$$

This representation is then passed through a learnable linear projection $\mathbf{W} \in \mathbb{R}^{K \times D}$ to obtain the logits $\mathbf{z}_i = (z_{i1}, \dots, z_{iK}) \in \mathbb{R}^K$:

$$\mathbf{z}_i = \mathbf{W}\widetilde{\mathbf{S}}_i$$

Finally, the softmax layer converts the logits into probabilities:

$$P_{\theta}(X_i \in \mathcal{C}_k \mid X_{i-L:i-1}) = \frac{\exp(z_{ik})}{\sum_{j=1}^K \exp(z_{ij})}, \quad k = 1, \dots, K$$

▶ The model is trained by minimizing the empirical negative log-likelihood over a large dataset $\mathcal{D} = \{(X_1^{(t)}, \dots, X_d^{(t)})\}_{t=1}^N$:

$$\hat{\ell}(\theta) = -\frac{1}{Nd} \sum_{t=1}^{N} \sum_{i=1}^{d} \log P_{\theta}(X_{i}^{(t)} \in \mathcal{C}_{k_{i}^{(t)}} \mid X_{i-L:i-1}^{(t)})$$

⁴Just like ChatGPT!

How do we apply GPT to generate sequences of extreme events?

Each conditional $P(X_i \in \mathcal{C}_k \mid X_{i-L:i-1})$ is approximated by a **decoder** Transformer⁴ TF_{\theta}, which maps the input embeddings $(\mathbf{s}_{i-L}, \dots, \mathbf{s}_{i-1})$:

$$\widetilde{\mathbf{S}}_i = \mathrm{TF}_{m{ heta}}(\mathbf{S}_i), \quad \text{with } \mathbf{S}_i = (\mathbf{s}_{i-L}, \dots, \mathbf{s}_{i-1})^{\mathrm{T}},$$

This representation is then passed through a learnable linear projection $\mathbf{W} \in \mathbb{R}^{K \times D}$ to obtain the logits $\mathbf{z}_i = (z_{i1}, \dots, z_{iK}) \in \mathbb{R}^K$:

$$\mathbf{z}_i = \mathbf{W}\widetilde{\mathbf{S}}_i.$$

Finally, the softmax layer converts the logits into probabilities:

$$P_{\theta}(X_i \in C_k \mid X_{i-L:i-1}) = \frac{\exp(z_{ik})}{\sum_{j=1}^K \exp(z_{ij})}, \quad k = 1, \dots, K$$

▶ The model is trained by minimizing the empirical negative log-likelihood over a large dataset $\mathcal{D} = \{(X_1^{(t)}, \dots, X_d^{(t)})\}_{t=1}^N$:

$$\hat{\ell}(\theta) = -\frac{1}{Nd} \sum_{t=1}^{N} \sum_{i=1}^{d} \log P_{\theta}(X_i^{(t)} \in \mathcal{C}_{k_i^{(t)}} \mid X_{i-L:i-1}^{(t)}).$$

⁴Just like ChatGPT!

How do we apply GPT to generate sequences of extreme events?

Each conditional $P(X_i \in \mathcal{C}_k \mid X_{i-L:i-1})$ is approximated by a **decoder Transformer**⁴ $\mathrm{TF}_{\boldsymbol{\theta}}$, which maps the input embeddings $(\mathbf{s}_{i-L},\ldots,\mathbf{s}_{i-1})$:

$$\widetilde{\mathbf{S}}_i = \mathrm{TF}_{m{ heta}}(\mathbf{S}_i), \quad \text{with } \mathbf{S}_i = (\mathbf{s}_{i-L}, \dots, \mathbf{s}_{i-1})^{\mathrm{T}},$$

This representation is then passed through a learnable linear projection $\mathbf{W} \in \mathbb{R}^{K \times D}$ to obtain the logits $\mathbf{z}_i = (z_{i1}, \dots, z_{iK}) \in \mathbb{R}^K$:

$$\mathbf{z}_i = \mathbf{W}\widetilde{\mathbf{S}}_i$$
.

Finally, the softmax layer converts the logits into probabilities:

$$P_{\theta}(X_i \in C_k \mid X_{i-L:i-1}) = \frac{\exp(z_{ik})}{\sum_{j=1}^K \exp(z_{ij})}, \quad k = 1, \dots, K.$$

The model is trained by minimizing the empirical negative log-likelihood over a large dataset $\mathcal{D} = \{(X_1^{(t)}, \dots, X_d^{(t)})\}_{t=1}^{N}$:

$$\hat{\ell}(\theta) = -\frac{1}{Nd} \sum_{t=1}^{N} \sum_{i=1}^{d} \log P_{\theta}(X_i^{(t)} \in \mathcal{C}_{k_i^{(t)}} \mid X_{i-L:i-1}^{(t)}).$$

⁴Just like ChatGPT!

How do we apply GPT to generate sequences of extreme events?

Each conditional $P(X_i \in \mathcal{C}_k \mid X_{i-L:i-1})$ is approximated by a **decoder** Transformer⁴ TF_{θ} , which maps the input embeddings $(\mathbf{s}_{i-L}, \ldots, \mathbf{s}_{i-1})$:

$$\widetilde{\mathbf{S}}_i = \mathrm{TF}_{\boldsymbol{\theta}}(\mathbf{S}_i), \quad \text{with } \mathbf{S}_i = (\mathbf{s}_{i-L}, \dots, \mathbf{s}_{i-1})^{\mathrm{T}},$$

This representation is then passed through a learnable linear projection $\mathbf{W} \in \mathbb{R}^{K \times D}$ to obtain the logits $\mathbf{z}_i = (z_{i1}, \dots, z_{iK}) \in \mathbb{R}^K$:

$$\mathbf{z}_i = \mathbf{W}\widetilde{\mathbf{S}}_i$$
.

Finally, the softmax layer converts the logits into probabilities:

$$P_{\theta}(X_i \in \mathcal{C}_k \mid X_{i-L:i-1}) = \frac{\exp(z_{ik})}{\sum_{j=1}^K \exp(z_{ij})}, \quad k = 1, \dots, K.$$

▶ The model is trained by minimizing the empirical negative log-likelihood over a large dataset $\mathcal{D} = \{(X_1^{(t)}, \dots, X_d^{(t)})\}_{t=1}^N$:

$$\hat{\ell}(\boldsymbol{\theta}) = -\frac{1}{Nd} \sum_{t=1}^{N} \sum_{i=1}^{d} \log P_{\boldsymbol{\theta}}(X_i^{(t)} \in \mathcal{C}_{k_i^{(t)}} \mid X_{i-L:i-1}^{(t)}).$$

⁴Just like ChatGPT!

References

References

- 1) Vaswani et al. (2017). Attention is All You Need. arXiv:1706.03762.
- 2) Ba et al. (2016). Layer Normalization. arXiv:1607.06450.
- 3) Garg et al. (2022). What Can Transformers Learn In-Context? A Case Study of Simple Function Classes. arXiv:2208.01066v3.
- 4) Akyürek et al. (2023). What Learning Algorithm Is In-Context Learning? Investigations with Linear Models. arXiv:2301.05207.
- Bai et al. (2023). Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection. arXiv:2306.11644
- 6) Bishop & Bishop (2024). Deep Learning: Foundations and Concepts. Springer.

Exploring Transformer-Based Models for Cascading Extremes

Clemente Ferrer

clemente.ferrer@usm.cl

Department of Mathematics Universidad Técnica Federico Santa María

Joint work with Miguel de Carvalho & Ronny Vallejos

Workshop on Generative AI for Extreme Events

Edinburgh, UK June 13, 2025