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Literature Review

During this talk | will cover the following topics:

>

Why use Transformers?

A Literature Review on Transformers.

Transformer in Statistics.

Large Language Models and Generative
Pre-trained Transformers (GPT).

Ideas on Transformers for Chained
Extremes.

Most of the figures and ideas in this
talk were taken from the book by
Bishop and Bishop (2024).
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Why use Transformers?
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Figure: Number of works (articles, preprints, book chapter) referring to 'Transformers’
since 2015 (Source: OpenAlex.org).
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Suppose N tokens

X1,...,XN 4 Input data.
where x, = (Zn1,. .., an)T €RP, n=1,...,N. The elements of the tokens are
called features.
@ xu
g
S X
2

D (features)

Figure: The structure of the data matrix X, of dimension N x D, in which row n
represents the transposed data vector xg.
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GOAL

Define a transformation from tokens x1,...,xy to output embeddings y1,...,ynN,

where each y,, is a weighted combination of ALL x,,, with weights reflecting the
relevance of x,, to yn.

PROPOSAL

N
Yn = g AnmXm,

m=1

where amqm > 0 are attention weights such that Zﬁ:l anpm = 1.

FIRST APPROACH

T
exp(xlx
Anm = (%5 %Xm) < Softmax.

o1 exP(X LX)

Using matrix notation

Y = Softmax(XXT)X +  Self-Attention.
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LIMITATION

The mapping {x»} — {yn} lacks learnable parameters and thus cannot adapt to
data. Additionally, all features in each x, contribute equally to attention weights,
limiting the model’s ability to focus selectively on informative features.

PARTIAL SOLUTION

Define -
X =XU, UeRPXP,

where U is learnable, analogous to a 'layer’ in standard neural networks. Then

Y = Softmax(XUUTXT)XU.

STILL A PROBLEM
Although this has much more flexibility, the matrix
XuuTx”T

is symmetric, whereas we would like the attention mechanism to support asymmetry.
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SOLUTION

Vaswani et al. (2017) proposed defining separate query, key, and value matrices each
having their own independent linear transformations:

Q=xwW@ K=xw® v=xw®),

where W(@) W) ¢ RPXDk and W) ¢ RP*Dv | where D, governs the
dimensionality of the output.

O
Y = Softmax QKT X v
N x D, N x N N x D,
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Vaswani et al. (2017) proposed defining separate query, key, and value matrices each
having their own independent linear transformations:

Q=xwW@ K=xw® v=xw®),

where W(@) W) ¢ RPXDk and W) ¢ RP*Dv | where D, governs the
dimensionality of the output. Therefore

Y = Softmax(QKT)V  « QKT are the attention weights.

O
Y = Softmax QKT X v
N x D, N Xx N N x D,

Figure: lllustration of the evaluation of the output from an attention layer given the
query, key, and value matrices Q, K, and V, respectively.
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FINAL ADJUSTMENT

To avoid vanishing gradients in softmax, scale
the dot product of query and key vectors by

v/ Dy, yielding the output of the attention layer
as:

vDx

T
Y = Attention(Q, K, V) = Softmax <QK ) A%

Scaled dot-product self-attention

This structure constitutes a single attention
head.

Y

mat mul

mat mul l
Q K v
— ] [w(k> [w<v> ]

t ¢ ¢

X

o
—

Figure: Information flow. Here 'mat
mul’ denotes matrix multiplication,
and 'scale’ refers to the normalization
of the argument to the softmax using

VDx.
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H,|H,| -~ [Hz| x |we | = Y
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HD, x D
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MODELING MULTIPLE DEPENDENCY PATTERNS

To capture different types of relationships in the data simultaneously we replicate the
attention mechanism into multiple heads.

Suppose we have H attention heads indexed by h = 1,..., H of the form

Hj, = Attention(Qp, K, Vi), Qn=XW K, =xw®™ v, =xw".

The heads are first concatenated into a single matrix, and the result is then linearly
transformed using a matrix W(°) to give a combined output in the form

Y(X) = Concat(Hy,...,Hy)W() e RV*Dv,

H,|H,| -~ [Hz| x |we | = Y

N x HD, N x D
HD, x D

Figure: Network architecture for multi-head attention.
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> concat

Figure: Information flow in a multi-head attention layer.
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TRAINING IMPROVEMENTS

To improve training efficiency, the output is
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To improve training efficiency, the output is

. . add & norm |+
followed by a residual connection and a layer
normalization (Ba, Kiros, and Hinton, 2016)

Z = LayerNorm(Y (X) + X).

MLP

VA

STILL WORK TO DO l add & norm |<~

An MLP is added after the attention layer to
break the linearity of the output and increase multi-head
the expressive capabilities of the attention layer: self-attention

X = LayerNorm(MLP(Z) + Z).

Again, this neural network layer can be X
improved by using a residual connection and
layer normalization. A short notation: Figure: One layer of the transformer

architecture. Here, 'add and norm’
denotes a residual connection followed
by layer normalization.
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Transformers in Statistics

Garg et al. (2022) show empirically that standard Transformers can be trained from
scratch to perform in-context learning of linear functions.
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Garg et al. (2022) show empirically that standard Transformers can be trained from
scratch to perform in-context learning of linear functions.

NOTATION

Let X’ be the input feature space, and ) be the output/label space, such that

F ={f:X — Y} is class of functions between this spaces.

IN-CONTEXT LEARNING SETTING
1) Sample f ~ Px and N i.i.d. inputs tokens x1,...,xxy ~ Px.
2) Generate labels y; = f(x;) € Y fori =1,..., N, obtaining {(xi,y,-)}ﬁ\]:1
3) Define a length-i prompt as
X;():gmpc = (X1, Y15 Xie1, Yie1,%i) s

such that the model prediction is y; = W TFy (Xgrgmpt) ey, i=1,...,N.
4) Training by minimizing the expected loss
i g b b
mem X1, 7XWNPX |: Z Yo ¥i ]
f~PF =1
where £ is an appropriate loss function.
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EXAMPLE (LINEAR FUNCTIONS)

Consider the class of linear functions
F={f:R*=SR|f(x)=w'x, we R

Sample

ii.d.

WNP].‘ = Nd(O,Id), X; ~ PX = Nd(O,Id), izl,...

independently. For each f determined by w, generate training pairs
yi = f(xi) = w'x,.
Then, train the Transformer to predict y; = WTFg(Xéigmpt) where

(&
Xprompt - (x17y17 LR 7xi717yi717xi)a

by minimizing the expected mean squared error loss

1 2
i E — Vi — Vi .
Ineln X1,...,xN~Ngz(0,Iy) |:N lz_:l(yl yl) :|
f~Ng(0,14) -
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In this setting, the Transformer learns to approximate the least squares estimator.

12
= Transformer
10 = | east Squares
5 = 3.Nearest Neighbors
= 08 N
5 =— Averaging
g 06
=4
T 04
o
"

0.2

0.0

o 10 20 30 40
in-context examples

Figure: Normalized squared error of the Transformer as a function of the number of
in-context examples (Garg et al., 2022).

14 /21



Transformers in Statistics

In this setting, the Transformer learns to approximate the least squares estimator.

12
= Transformer
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5 = 3.Nearest Neighbors
= 08 N
5 =— Averaging
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=4
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o
"
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Figure: Normalized squared error of the Transformer as a function of the number of
in-context examples (Garg et al., 2022).

Bai et al. (2023) show! that Transformers can implement a broad class of standard
ML algorithms in context, such as least squares, Ridge regression, Lasso, convex risk
minimization for GLMs.

1Possibly the most mathematically formal paper on this topic.
14 /21
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These can be used as generative models that create output sequences of tokens. we
will focus on a class of models called GPT which stands for generative pre-trained
transformer.

GOAL

Construct an autoregressive model of the form defined by
N
p(x1,. ., xn) = [ [ pGn | X1m-1), Xim—1 = (X1,...,Xn1),
n=1

where conditional distributions p(x, | X1:n—1) are expressed using a Transformer
neural network that is learned from data.

IDEA
Transformer layers ~
X1yeey XN = X1yeey XNy

Each output needs to represent a probability distribution over the class of tokens:

Y = Softmax(XW®), W) ¢ RP*K,
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EMBEDDING AND POSITIONAL ENCODING
We begin by defining a dictionary
V={wi,ws,...,wk},

which is a fixed, finite set of words indexed from 1 to K. A word v; is mapped to an
index in the dictionary using a tokenization function 7:V — {1,..., K}, such that

T(vi) = ki with v; =wy,.
This index is then used to construct a one-hot encoded vector o; € {0, 1}, where

the k;-th component is set to 1 and all others are 0.

This one-hot vector is then projected into a dense, learnable embedding space using
an embedding matrix E € RP* X and positional information (Vaswani et al. 2017) is
added

x; = Eo; + r;.
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GPT Architecture

YN+1

~~
L layers

positional
encoding

(VAN I AVAV

embedding embedding embedding
[ [

XN

(start) X1

Figure: Architecture of a GPT decoder transformer network. Here ‘LSM’ stands for
linear-softmax and denotes a linear transformation whose learnable parameters are

shared across the token positions, followed by a softmax activation function.
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> Define a finite partition {Ck}kK:1 of X, and a one-hot tokenization function
7: X — {0,1}X defined as

(X;) = (I(X; €C1),..., I(X; €Ck)), i=1,...,d.

» Each token is then projected into an embedding space using a learnable matrix
E € RP*K  positional encoding r; and extremal encoding?® are added

S; = ET(Xl) +r; +e;.

> Instead of modeling the joint density of (X1,...,Xy), we model the probability
that each X falls in a set Cg, using:
d
P(X; € Ckys-»Xd € de) = H P(X; € Ck, | X1:-1).
=1

2Ongoing work with Miguel de Carvalho and Ronny Vallejos.

3e.g. based on extreme quantile regression models.
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» This representation is then passed through a learnable linear projection
W € REXD 1o obtain the logits z; = (2;1,...,2ix) € RE:

z; = WS;.
> Finally, the softmax layer converts the logits into probabilities:

exp(zix)
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How Do WE ApPLY GPT TO GENERATE SEQUENCES OF EXTREME EVENTS?

» Each conditional P(X; € Ci | X;_r.;—1) is approximated by a decoder
Transformer* TFg, which maps the input embeddings (s;_r,...,8i—1):

gi ZTFQ(SZ‘), with S; = (Si_L,...,Sifl)T,

» This representation is then passed through a learnable linear projection

W € REXD 1o obtain the logits z; = (2;1,...,2ix) € RE:
z; = ng
> Finally, the softmax layer converts the logits into probabilities:
exp(2ik)
Po(Xi €Cr | Xi—L:io1) = —f¢—— k=1,...,K.

2oj=1 exp(zij)

» The model is trained by minimizing the empirical negative log-likelihood over a
large dataset D = {(Xit), R Xét))}iv:lz

N d

1

U6) =~ 577 > lor Po(X[" €C 0 | X[Vp; ).
t=1i=1

4Just like ChatGPT!
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