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Background on extreme events

Univariate context: Observations Y1, . . . ,Yn.
Can we estimate the probability of unprecedented extreme events of a
given size (typically larger than Mn = max(Y1, . . . ,Yn))?
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Marginal modelling of extremes — peaks-over-threshold

Pickands–de Haan–Balkema Theorem:
High threshold excesses Y − u | Y > u may be approximated by the
generalised Pareto (GP) distribution: if there exists a scaling function
a(u) > 0 such that as u → yF (upper endpoint)

Pr

(
Y − u

a(u)
> y | Y > u

)
→ a non-degenerate distribution

then it must be 1− FGP(y |σu, ξ) :=

 (1 + ξy/σu)
−1/ξ
+ , ξ ̸= 0,

exp(−y/σu), ξ = 0,
,

where σu > 0 and ξ ∈ R.
In practice, we model excesses directly as
(Y − u) | Y > u ∼ GP(σu, ξ) where u is some high pre-specified
threshold.
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Conditional setting

What if we have covariates X ∈ Rp?.

Often make parametric assumptions about Y |X = x, e.g.,

(Y − u(x)) | (X = x,Y > u(x)) ∼ GP(σu(x), ξ(x)),

with u(x) > 0 some varying threshold function.

Lots of AI-based options:

neural networks, e.g., Allouche et al. (2024), Cisneros et al. (2024),
Pasche and Engelke (2024), Richards and Huser (2025).
trees (Farkas et al., 2024) and forests (Gnecco et al., 2024)
boosting (Velthoen et al., 2023; Koh, 2023)
GAMs (Chavez-Demoulin and Davison, 2005; Youngman, 2019)

Richards, J. and Huser, R. (2025). Extreme Quantile Regression with Deep Learning. In Handbook on Statistics of
Extremes, Chapman & Hall/CRC
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Conditional setting

What if we have covariates X ∈ Rp?.

Often make parametric assumptions about Y |X = x, e.g.,

(Y − u(x)) | (X = x,Y > u(x)) ∼ GP(σu(x), ξ(x)),

with u(x) > 0 some varying threshold function.

What about i) below the threshold, ii) choosing the threshold, iii)
interpretability?

We propose a semi-parametric density regression model that has GP
upper-tails without the need for threshold selection.
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Background – SPQR

Introduced by Xu and Reich (2021), SPQR is a flexible, semi-parametric
approach to conditional density estimation.

No parametric assumptions; instead, the conditional density is a
convex combination of M-spline basis functions:

fSPQR(y |x) =
K∑

k=1

wk(x)Mk(y),

with weights wk(x) : Rp 7→ [0, 1], k = 1, . . . ,K , satisfying∑K
k=1 wk(x) = 1 for all x.

Xu, S.G. and Reich, B. J. (2021). Bayesian nonparametric quantile process regression and estimation of marginal quantile
effects. Biometrics, 79:151–164
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Each basis function, Mk(y), is a valid PDF on [0, 1] (Ramsay, 1988).

The integral of an M-spline is an I -spline:

FSPQR(y |x) =
K∑

k=1

wk(x)Ik(x).

The weights W(x) := {w1(x), . . . ,wK (x)} are modelled as a MLP
with softmax final layer.

Although very flexible, and fast-to-compute, FSPQR satisfies no
asymptotic guarantees and has bounded support.

Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science, 3(4):425–441
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Blended GP distribution

Castro-Camilo et al. (2022) proposed the blended generalised extreme
value distribution (bGEV), which blends the Gumbel and Fréchet
distributions

⇒ the resulting distribution function has an exact Gumbel lower-tail
and Fréchet upper-tail.

We follow a similar idea, but instead blend the GP distribution with a
constituent bulk distribution, say Fbulk.

Here we present the specific case of the unconditional blended GP
with Fbulk := FSPQR; we will introduce covariates later.

Castro-Camilo, D., Huser, R., and Rue, H. (2022). Practical strategies for generalized extreme value-based regression
models for extremes. Environmetrics, 33(6):e2742
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Blended GP

We define a bGP(W, ξ) r.v. via its continuous distribution function

H(y |W, ξ) =

{
FSPQR(y |W)1−p(y)FGP(y − ũ|σ̃u, ξ)p(y), y > ũ,

FSPQR(y |W), y ≤ ũ,
(1)

where p(y) ∈ [0, 1] is a weighting function;

p(y) = p(y ; a, b, c1, c2) = FBeta

(
y − a

b − a
, c1, c2

)
,

where FBeta (·, c1, c2) is a Beta(c1, c2) dist. with shapes c1 > 3, c2 > 3.

Note that p(y) = 0 for any y < a and p(y) = 1 for any y > b.
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Blended GP

We blend FSPQR and FGP in the interval [a, b] ⊂ [0, 1], where the
bounds are the pa and pb quantiles of FSPQR (pb > pa).

To ensure continuity of H, we require

pa := FSPQR(a|W) = FGP(a− ũ|σ̃u, ξ)
pb := FSPQR(b|W) = FGP(b − ũ|σ̃u, ξ),

with:

(σ̃, ũ) =


(

ξ(a−b)
(1−pa)−ξ−(1−pb)−ξ , a−

(a−b){(1−pa)−ξ−1}
(1−pa)−ξ−(1−pb)−ξ

)
, ξ ̸= 0,(

(a−b)
log(1−pa)−log(1−pb)

, a− (a−b){− log(1−pa)}
log(1−pa)−log(1−pb)

)
, ξ = 0,

;

note that ũ < a.
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Blended GP

For ξ < 0, the upper-endpoint of H(·|W, ξ) satisfies ũ − σ̃u/ξ > b;
for ξ ≥ 0, the upper-endpoint of H(·|W, ξ) is infinite.

The density is closed-form, and is smooth and continuous.

Play along at home!
You can also follow the link
https://reetamm-xspqr.share.

connect.posit.cloud
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Increasing tail-heaviness
Left: bGP, GP, SPQR distribution. Right: corresponding density functions.
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Increasing bulk-flexibility
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Increasing SPQR weighting
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xSPQR

In the presence of covariates, we model x 7→ (ξ(x),W(x)) via an MLP:

x1
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xp
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We refer to this framework as extremal SPQR (xSPQR).
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Inference/coviarate importance

Inference proceeds via maximum likelihood using Adam.

xSPQR can be pre-trained with an SPQR fit.

Via the R interface to keras.

Variable importance (VI) can be the assessed for conditional quantile
function Q(τ |x) at τ ∈ (0, 1) separately of the shape ξ(x)

Using model-agnostic accumulated local effects (ALEs; Apley and
Zhu, 2020).

Apley, D. W. and Zhu, J. (2020). Visualizing the effects of predictor variables in black box supervised learning models.
JRSSB, 82:1059–1086
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Simulation study

Covariates Xi , i = 1, . . . , 3, are independent Unif(0,1).

Response Y | (X = x) is log-normal(µ(x), σ(x)) with

µ(x) = 5(1− 1/[1 + exp{−(1− 5x1x2)}])

and
σ(x) = 1/[1 + exp{−(1− 5x1x2)}].

Only X1 and X2 act on Y .

We take the MLP to have two layers, with nh nodes and sigmoid
activation in each layer.
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Simulation study

To evaluate estimation accuracy, we compute the integrated
conditional 1-Wasserstein distance (IWD)

IWD =

∫
X

∫ 1

0
|Q(y |x)− Q̂(y |x)|dx,

where X is the sample space for X and Q(y |x) denotes the
conditional quantile function.

We also consider a tail-calibrated version of the IWD, denoted by
tIWD, which is constructed by replacing the limits of the inner
integral of (18) with [0.999, 1].
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Results

n K nh tIWD (pa, pb, c1)

1000

15 16 11.2 (10.3, 12.3)/9.23 (7.99, 10.6) (0.9, 0.999, 5)

15 32 9.50 (8.63, 10.6)/9.66 (8.18, 11.2) (0.925, 0.999, 5)

25 16 12.0 (11.2, 13.0)/9.56 (8.42, 10.9) (0.925, 0.999, 5)

25 32 9.20 (8.31, 9.96)/9.80 (8.70, 11.1) (0.925, 0.999, 5)

10000

15 16 10.6 (9.51, 11.3)/7.08 (6.40, 7.85) (0.75, 0.99, 25)

15 32 10.7 (10.0, 11.6)/6.99 6.36, 8.05) (0.75, 0.99, 25)

25 16 8.60 (7.33, 10.0)/5.56 (4.45, 6.86) (0.75, 0.99, 25)

25 32 10.2 (9.40, 16.6)/5.29 (4.59, 6.50) (0.75, 0.99, 25)

Median (25%,75% quantiles) of tIWD estimates are reported for the original/heavy-tailed SPQR

model, with the hyper-parameters (pa, pb, c1) optimised for each row. Lower values are better.
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Test density estimation

Density (top) and log-survival (bottom) functions.

True, SPQR, and xSPQR.
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Variable importance

VI scores (10−2) for ξ(x): 1.56, 2.34, 0.09.
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Case study: US wildfire burnt areas

Burnt areas for over 10,000 moderate and large wildfires in the US,
1990–2020 (Lawler and Shaby, 2024).

First and last 5 years used for testing. Model trained for 1995–2015.

This leaves 6416 fires for training and 3344 fires for testing.

Lawler, E. S. and Shaby, B. A. (2024). Anthropogenic and meteorological effects on the counts and sizes of moderate and
extreme wildfires. Environmetrics, 35(7):e2873
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Case study: US wildfire burnt areas

We model the impacts of X =

pr prev: total precip. last year;
pr curr: total precip. this month;
rmin: relative humidity;
tmax: maximum temperature;
wspd: windspeed;
fire yr: fire year;

on Y =
√
Burnt area.

Model hyper-parameters/MLP architecture optimised via grid-search:

We here use a 2-layered MLP with Nh = 12 nodes per layer, sigmoid
activations, and K = 25 basis functions.
We also constrain ξ(x) > 0.
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Model fits - bulk
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Model fits - tail
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Estimates of ξ(x)
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Relative variable importance - bulk
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Relative variable importance - tail

Time period pr prev rmin tmax wspd pr curr fire yr

1990–1994 2.35 2.08 1.41 0.90 0.91 0.22

1995–2015 2.87 2.13 1.82 1.72 1.21 0.61

2016–2020 2.39 1.69 1.42 2.26 1.58 0.50
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Spatial variation in quantiles

Figure: Estimates of the median (left) and 0.999-quantile (right) of burnt
area (in 1000s of acres) for all observed wildfires, averaged over L3
ecoregions. Transparent regions do not include any observed wildfires.

U.S. Environmental Protection Agency.
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
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Conclusion

Very flexible density regression model that is EVT-compliant.

Requires no modelling of an intermediate exceedance threshold and
provides a characterisation of the full density.

Fast inference time, using Keras in R.

Easily extendable to full real support and lower-tailed GP.

Majumder, R. and Richards, J. (2025+). Semi-parametric bulk and
tail regression using spline-based neural networks. arxiv:2504.19994.
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Appendix: construction of M-splines

Defined on a set of K + d knots, t1, . . . , tK+d , which we take to be
empirical quantiles of the training Y with equally-spaced levels.
For d = 1,

Mk(y |d) =

{
1

tk+1−tk
, tk ≤ y < tk+1,

0, otherwise.

and, for d > 1,

Mk(y |d) =
d [(y − tk)Mk(y |d − 1) + (tk+d − y)Mk+1(y |d − 1)]

(d − 1)(tk+d − tk)
.

For SPQR/xSPQR, d = 3.
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Appendix: variable importance scores

Consider a generic differentiable function g(x), where x = (x1, . . . , xp) is
the vector of covariates. The sensitivity of g(x) to covariate xj is
quantified by the partial derivative

ġj(xj) =
∂g(x)

∂xj
.

The accumulated local effect (ALE) of xj on g(·) is then defined as

ALEj(xj ; g) =

∫ xj

z0,j

E[ġj(xj)|xj = zj ]dzj ,

where z0,j is an approximate lower bound for xj .
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Appendix: variable importance scores (cont.)

Following Greenwell et al. (2018), we measure heterogeneity of the effect
of Xj on g(·) by taking the standard deviation of ALEj(Xj ; g) with respect
to Xj .

The variable importance (VI) score for Xj on g(·) is

VIj(g) =
√

VarXj
[ALEj(Xj ; g)].

For xSPQR, replace g(·) with the conditional τ -quantile function or ξ(x).
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