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Background on extreme events

o Observations Yi,..., Y,.
Can we estimate the probability of unprecedented extreme events of a
given size (typically larger than M, = max(Y1,..., Yn))?
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Marginal modelling of extremes — peaks-over-threshold

o Pickands—de Haan—-Balkema Theorem:
may be approximated by the
. if there exists a scaling function
a(u) > 0 such that as u — yg (upper endpoint)

Y —
Pr < u >y|lY > u) — a non-degenerate distribution

a(u)
(L+&y/on) S, €#0,
exp(—y/ou), £=0,

then it must be 1 — Fgp(y|oy, &) :=

where g, > 0 and £ € R.

o In practice, we model excesses directly as
(Y—=u)| Y >u~ GP(0y,&) where u is some high pre-specified
threshold.
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Conditional setting

What if we have covariates X € RP?.

o Often make parametric assumptions about Y|X = x, e.g.,
(Y = u() [ (X=x,Y > u(x)) ~ GP( ),

with u(x) > 0 some varying threshold function.
) :
neural networks, e.g., Allouche et al. (2024), Cisneros et al. (2024),
Pasche and Engelke (2024), Richards and Huser (2025).
trees (Farkas et al., 2024) and forests (Gnecco et al., 2024)
boosting (Velthoen et al., 2023; Koh, 2023)
GAMs (Chavez-Demoulin and Davison, 2005; Youngman, 2019)
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©

©

Richards, J. and Huser, R. (2025). Extreme Quantile Regression with Deep Learning. In Handbook on Statistics of
Extremes, Chapman & Hall/CRC
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Conditional setting

What if we have covariates X € RP?.

o Often make parametric assumptions about Y|X = x, e.g.,

(Y —u(x) | (X =x, ) ~ GP(au(x), £(x)),

with u(x) > 0 some varying threshold function.

o We propose a semi-parametric density regression model that has GP
upper-tails without the need for threshold selection.
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Background — SPQR

Introduced by Xu and Reich (2021), SPQR is a flexible, semi-parametric
approach to

o No parametric assumptions; instead, the conditional density is a
convex combination of M-spline basis functions:

™ =

fspQr(y[x) = wi (%) Mi(y),

1

1

with weights wy(x) : R? +— [0,1],k = 1,..., K, satisfying
SR wi(x) =1 for all x.

Xu, S.G. and Reich, B. J. (2021). Bayesian nonparametric quantile process regression and estimation of marginal quantile
effects. Biometrics, 79:151-164
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Each basis function, Mk(y), is a valid PDF on [0, 1] (Ramsay, 1988).

The integral of an M-spline is an /-spline:

K
Fspar(y[x) = > wi(x)lk(x).
k=1
The weights W(x) := {w1(x), ..., wk(x)} are modelled as a MLP
with softmax final layer.

Although very flexible, and fast-to-compute, Fspqr satisfies no
asymptotic guarantees and has bounded support.

Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science;3(4):425-441
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Blended GP distribution

o Castro-Camilo et al. (2022) proposed the
, which blends the Gumbel and Fréchet
distributions
= the resulting distribution function has an exact Gumbel lower-tail
and Fréchet upper-tail.

o We follow a similar idea, but instead blend the GP distribution with a
constituent bulk distribution, say Fpyik.

o Here we present the specific case of the unconditional blended GP
with Fuyk == Fspqr; we will introduce covariates later.

Castro-Camilo, D., Huser, R., and Rue, H. (2022). Practical strategies for generalized extreme value-based regression
models for extremes. Environmetrics, 33(6):e2742
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Blended GP

We define a bGP(W, §) r.v. via its continuous distribution function

Fspqr(yW)rPW) Fap(y — |6, €)PW),

y > i, (1)
Fspqr(yW), y <,

IN V

H(yW,¢) = {
where p(y) € [0,1] is a weighting function;

—a
p(y) = p(y:a, b, c1, c2) = Fpeta (Z_a ct, C2> ,
where Fpeta (¢, c1, ¢2) is a Beta(ci, ) dist. with shapes ¢; > 3, ¢ > 3.

Note that p(y) = 0 for any y < a and p(y) =1 for any y > b.
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Blended GP

o We , where the
bounds are the p, and p;, quantiles of Fspqr (pp > Pa)-

o To ensure continuity of H, we require

pa = Fspqr(a|W) = Fgp(a — i|64,&)
pb = Fspqr(b|W) = Fgp(b — |64, §),

with:
&(a—b) _ (a=b){(1—ps) -1}
(5,0) = TPt (pp) €7 (1—pa)‘5—(1—pb)‘5>  §70,
’ (a—b) 5 — (a=b){—log(1—pa)} ) £€=0
log(1—pa)—log(1—pp)’ log(1—pa)—log(1—ps) ) ’

note that i < a.
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Blended GP

o For £ <0, the upper-endpoint of H(-|W, &) satisfies i — 5,/ > b;

for £ > 0, the upper-endpoint of H(:|W,¢) is infinite.

o The density is closed-form, and is smooth and continuous.

Play along at home!

ok
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Increasing tail-heaviness
Left: bGP, GP, SPQR distribution. Right: corresponding density functions.
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Increasing bulk-flexibility
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Increasing SPQR weighting
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xSPQR

In the presence of covariates, we model x — (§(x), W(x)) via an MLP:

Hidden Hidden
layer 1 layer 2




Inference/coviarate importance

° using Adam.

o xSPQR can be pre-trained with an SPQR fit.

o Via the R interface to keras.

o Variable importance (VI) can be the assessed for conditional quantile
function Q(7|x) at 7 € (0, 1) separately of the shape £(x)

o Using model-agnostic accumulated local effects (ALEs; Apley and

Zhu, 2020).

Apley, D. W. and Zhu, J. (2020). Visualizing the effects of predictor variables in black box supervised learning models.
JRSSB, 82:1059-1086
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Simulation study

©

Covariates X;,i =1,...,3, are independent Unif(0,1).
Response Y | (X = x) is log-normal(y(x), o(x)) with

©

p(x) = 5(1 = 1/[1 + exp{—(1 — 5x1x2)}])

and
o(x) =1/[1 + exp{—(1 — 5x1x2) }].

Only Xj and X; act on Y.

©

o We take the MLP to have two layers, with n, nodes and sigmoid
activation in each layer.
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Simulation study

o To evaluate estimation accuracy, we compute the integrated
conditional 1-Wasserstein distance (IWD)

1
WD = /X /O Q1) — Oy [x)ldx,

where X' is the sample space for X and Q(y|x) denotes the
conditional quantile function.

o We also consider a of the IWD, denoted by
tIWD, which is constructed by replacing the limits of the inner
integral of (18) with [0.999, 1].
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Results

n K tIWD (Pa, Pb, c1)

15 16 11.2(10.3, 12.3)/9.23 (7.99, 10.6)  (0.9,0.999,5)

o 15 32 050 (8.63,10.6)/9.66 (8.18, 112)  (0.925,0.999,5)
25 16 12.0 (11.2, 13.0)/9.56 (8.42, 10.9)  (0.925,0.999,5)

25 32 09.20 (831, 9.96)/9.80 (8.70, 11.1)  (0.925,0.999,5)

15 16 10.6 (9.51, 11.3)/7.08 (6.40, 7.85)  (0.75,0.99,25)

oo 15 32 107(10.0,11.6)/6.99 6.36, 8.05)  (0.75,0.99,25)

(
25 16 8.60 (7.33, 10.0)/5.56 (4.45, 6.86)  (0.75,0.99, 25)
25 32 10.2 (9.40, 16.6)/5.29 (4.59, 6.50)  (0.75,0.99, 25)

Median (25%,75% quantiles) of tIWD estimates are reported for the original /heavy-tailed SPQR

model, with the hyper-parameters (pa, pp, c1) optimised for each row. Lower values are better.
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Test density estimation
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Variable importance
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Case study: US wildfire burnt areas

(Lawler and Shaby, 2024).
o First and last 5 years used for testing. Model trained for 1995-2015.
o This leaves 6416 fires for training and 3344 fires for testing.

Lawler, E. S. and Shaby, B. A. (2024). Anthropogenic and meteorological effects on the counts and sizes of moderate and
extreme wildfires. Environmetrics, 35(7):e2873
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Case study: US wildfire burnt areas

o W

[¢)

model the impacts of X =

pr-prev: total precip. last year;
pr_curr: total precip. this month;
rmin: relative humidity;

tmax: maximum temperature;
wspd: windspeed;

fire_yr: fire year;

on Y = v/Burnt area.

o Model hyper-parameters/MLP architecture optimised via grid-search:
o

© ©6 06 06 0 o

o We also constrain &(x) > 0.
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Model fits - bulk
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Model fits - tail
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Estimates of £(x)
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Relative variable importance - bulk
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Relative variable importance - tail

Time period pr_prev

1990-1994 2.35

rmin tmax wspd pr_curr fire_yr

2.08 141 0.90 0.91

0.22
1995-2015 2.87 213 182 1.72 1.21 0.61
2016-2020 2.39 169 142 226 1.58 0.50
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Spatial variation in quantiles

xSPQR

400 600

800 1000
ecoregions. Transparent regions do not include any observed wildfires.
U.S. Environmental Protection Agency.
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental=united+states
"~ J.Richards (Edinburgh)

Figure: Estimates of the median (left) and 0.999-quantile (right) of burnt
area (in 1000s of acres) for all observed wildfires, averaged over L3
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Conclusion

©

©

(+]

©

Very flexible density regression model that is EVT-compliant.

Requires no modelling of an intermediate exceedance threshold and
provides a characterisation of the full density.

Fast inference time, using Keras in R.

Easily extendable to full real support and lower-tailed GP.

J. Richards (Edinburgh)
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Appendix: construction of M-splines

Defined on a set of K + d knots, ti,..., tk1q4, which we take to be
empirical quantiles of the training Y with equally-spaced levels.
Ford =1,

1
Mi(y|d) = { Bt tik <y < tiga,
0, otherwise.

and, for d > 1,

d[(y — i) M(yld — 1) + (tktd — ¥)Mit1(yld — 1)]
(d = 1)(tkt+d — tk) ‘

Mi(y|d) =

For SPQR/xSPQR, d = 3.
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Appendix: variable importance scores

Consider a generic differentiable function g(x), where x = (x1,...,Xp) is
the vector of covariates. The sensitivity of g(x) to covariate x; is
quantified by the partial derivative

dg(x)
oxj

&(x) =
The accumulated local effect (ALE) of x; on g(-) is then defined as

Xj
ALEj(x;; g) =/ Elgi(x)lx = z]dz,

20,

where z; is an approximate lower bound for x;.
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Appendix: variable importance scores (cont.)

Following Greenwell et al. (2018), we measure heterogeneity of the effect
of Xj on g(-) by taking the

The variable importance (VI) score for Xj on g(-) is

VIj(g) = 1/ Varx [ALE;(X;: g)].
For xSPQR, replace g(-) with the conditional 7-quantile function or £(x).
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