# Heavy-tailed density regression using spline-based neural networks and the blended generalised Pareto distribution

Jordan Richards<sup>1</sup> Reetam Majumder<sup>2</sup>

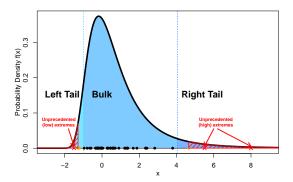
<sup>1</sup>School of Mathematics, University of Edinburgh

<sup>2</sup>Department of Mathematical Sciences, University of Arkansas



## Background on extreme events

• Univariate context: Observations  $Y_1, \ldots, Y_n$ . Can we estimate the probability of unprecedented extreme events of a given size (typically larger than  $M_n = \max(Y_1, \ldots, Y_n)$ )?



## Marginal modelling of extremes — peaks-over-threshold

#### • Pickands-de Haan-Balkema Theorem:

High threshold excesses  $Y - u \mid Y > u$  may be approximated by the generalised Pareto (GP) distribution: if there exists a scaling function a(u) > 0 such that as  $u \to y_F$  (upper endpoint)

$$\Pr\left(\frac{Y-u}{a(u)}>y\mid Y>u\right) o ext{a non-degenerate distribution}$$

then it must be 
$$1-F_{\mathrm{GP}}(y|\sigma_u,\xi):=\left\{ egin{array}{ll} (1+\xi y/\sigma_u)_+^{-1/\xi}, & \xi 
eq 0, \\ \exp(-y/\sigma_u), & \xi=0, \end{array} 
ight.,$$

where  $\sigma_u > 0$  and  $\xi \in \mathbb{R}$ .

• In practice, we model excesses directly as  $(Y-u) \mid Y>u \sim \mathrm{GP}(\sigma_u,\xi)$  where u is some high pre-specified threshold.

J. Richards (Edinburgh) xSPQR 3/35

# Conditional setting

#### What if we have covariates $\mathbf{X} \in \mathbb{R}^p$ ?.

• Often make parametric assumptions about Y|X = x, e.g.,

$$(Y - u(\mathbf{x})) \mid (\mathbf{X} = \mathbf{x}, Y > u(\mathbf{x})) \sim \mathsf{GP}(\sigma_u(\mathbf{x}), \xi(\mathbf{x})),$$

with  $u(\mathbf{x}) > 0$  some varying threshold function.

- Lots of Al-based options:
  - **neural networks**, e.g., Allouche et al. (2024), Cisneros et al. (2024), Pasche and Engelke (2024), Richards and Huser (2025).
  - trees (Farkas et al., 2024) and forests (Gnecco et al., 2024)
  - boosting (Velthoen et al., 2023; Koh, 2023)
  - GAMs (Chavez-Demoulin and Davison, 2005; Youngman, 2019)

Richards, J. and Huser, R. (2025). Extreme Quantile Regression with Deep Learning. In Handbook on Statistics of Extremes, Chapman & Hall/CRC

J. Richards (Edinburgh) xSPQR 4/35

# Conditional setting

#### What if we have covariates $\mathbf{X} \in \mathbb{R}^p$ ?

• Often make parametric assumptions about Y|X = x, e.g.,

$$(Y - u(\mathbf{x})) \mid (\mathbf{X} = \mathbf{x}, \frac{Y}{} > u(\mathbf{x})) \sim \mathsf{GP}(\sigma_u(\mathbf{x}), \xi(\mathbf{x})),$$

with  $u(\mathbf{x}) > 0$  some varying threshold function.

- What about i) below the threshold, ii) choosing the threshold, iii) interpretability?
- We propose a semi-parametric density regression model that has GP upper-tails without the need for threshold selection.

# Background - SPQR

Introduced by Xu and Reich (2021), SPQR is a flexible, semi-parametric approach to conditional density estimation.

• **No parametric assumptions**; instead, the conditional density is a convex combination of *M*-spline basis functions:

$$f_{\text{SPQR}}(y|\mathbf{x}) = \sum_{k=1}^{K} w_k(\mathbf{x}) M_k(y),$$

with weights  $w_k(\mathbf{x}) : \mathbb{R}^p \mapsto [0,1], k = 1, \dots, K$ , satisfying  $\sum_{k=1}^K w_k(\mathbf{x}) = 1$  for all  $\mathbf{x}$ .

Xu, S.G. and Reich, B. J. (2021). Bayesian nonparametric quantile process regression and estimation of marginal quantile effects. Biometrics, 79:151–164

J. Richards (Edinburgh) xSPQR 6/35

- Each basis function,  $M_k(y)$ , is a **valid PDF** on [0,1] (Ramsay, 1988).
- The integral of an *M*-spline is an *I*-spline:

$$F_{\mathrm{SPQR}}(y|\mathbf{x}) = \sum_{k=1}^{K} w_k(\mathbf{x}) I_k(\mathbf{x}).$$

- The weights  $W(\mathbf{x}) := \{w_1(\mathbf{x}), \dots, w_K(\mathbf{x})\}$  are modelled as a MLP with softmax final layer.
- Although very flexible, and fast-to-compute,  $F_{SPQR}$  satisfies no asymptotic guarantees and has bounded support.

Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science (4):425–441 📱 🕟 💈 🔻 🔊 🔾 🔾

J. Richards (Edinburgh) xSPQR 7/35

#### Blended GP distribution

- Castro-Camilo et al. (2022) proposed the blended generalised extreme value distribution (bGEV), which blends the Gumbel and Fréchet distributions
  - ⇒ the resulting distribution function has an exact **Gumbel** lower-tail and **Fréchet** upper-tail.

- We follow a similar idea, but instead blend the GP distribution with a constituent *bulk* distribution, say  $F_{\text{bulk}}$ .
- Here we present the specific case of the **unconditional** blended GP with  $F_{\rm bulk} := F_{\rm SPQR}$ ; we will introduce covariates later.

Castro-Camilo, D., Huser, R., and Rue, H. (2022). Practical strategies for generalized extreme value-based regression models for extremes. *Environmetrics*, 33(6):e2742

J. Richards (Edinburgh) xSPQR 8/35

#### Blended GP

We define a bGP( $W, \xi$ ) r.v. via its **continuous** distribution function

$$H(y|\mathcal{W},\xi) = \begin{cases} F_{\mathrm{SPQR}}(y|\mathcal{W})^{1-p(y)} F_{\mathrm{GP}}(y-\tilde{u}|\tilde{\sigma}_{u},\xi)^{p(y)}, & y > \tilde{u}, \\ F_{\mathrm{SPQR}}(y|\mathcal{W}), & y \leq \tilde{u}, \end{cases}$$
(1)

where  $p(y) \in [0,1]$  is a weighting function;

$$p(y) = p(y; a, b, c_1, c_2) = F_{\text{Beta}}\left(\frac{y-a}{b-a}, c_1, c_2\right),$$

where  $F_{\mathrm{Beta}}(\cdot,c_1,c_2)$  is a  $\mathrm{Beta}(c_1,c_2)$  dist. with shapes  $c_1>3,c_2>3$ .

Note that p(y) = 0 for any y < a and p(y) = 1 for any y > b.

#### Blended GP

- We blend  $F_{\rm SPQR}$  and  $F_{\rm GP}$  in the interval  $[a,b]\subset [0,1]$ , where the bounds are the  $p_a$  and  $p_b$  quantiles of  $F_{\rm SPQR}$   $(p_b>p_a)$ .
- To ensure continuity of *H*, we require

$$p_a := F_{SPQR}(a|\mathcal{W}) = F_{GP}(a - \tilde{u}|\tilde{\sigma}_u, \xi)$$
  
$$p_b := F_{SPQR}(b|\mathcal{W}) = F_{GP}(b - \tilde{u}|\tilde{\sigma}_u, \xi),$$

with:

$$(\tilde{\sigma}, \tilde{u}) = \begin{cases} \left(\frac{\xi(a-b)}{(1-p_a)^{-\xi} - (1-p_b)^{-\xi}}, a - \frac{(a-b)\{(1-p_a)^{-\xi} - 1\}}{(1-p_a)^{-\xi} - (1-p_b)^{-\xi}}\right), & \xi \neq 0, \\ \left(\frac{(a-b)}{\log(1-p_a) - \log(1-p_b)}, a - \frac{(a-b)\{-\log(1-p_a)\}}{\log(1-p_a) - \log(1-p_b)}\right), & \xi = 0, \end{cases} ;$$

note that  $\tilde{u} < a$ .

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 釣 9 C C

J. Richards (Edinburgh)

#### Blended GP

- For  $\xi < 0$ , the upper-endpoint of  $H(\cdot|\mathcal{W}, \xi)$  satisfies  $\tilde{u} \tilde{\sigma}_u/\xi > b$ ; for  $\xi \geq 0$ , the upper-endpoint of  $H(\cdot|\mathcal{W}, \xi)$  is infinite.
- The density is closed-form, and is **smooth** and **continuous**.

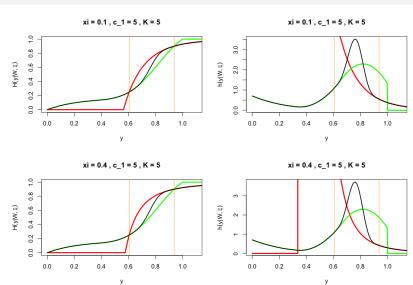


#### Play along at home!

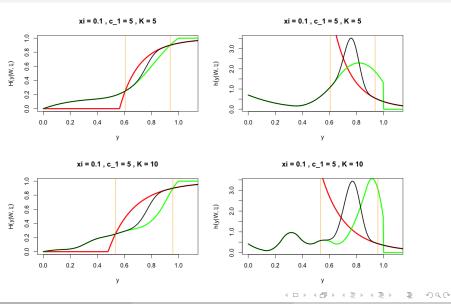
You can also follow the link https://reetamm-xspqr.share.connect.posit.cloud

#### Increasing tail-heaviness

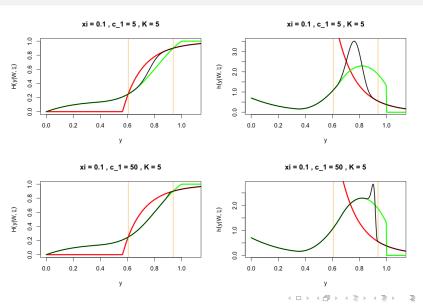
Left: bGP, GP, SPQR distribution. Right: corresponding density functions.



# Increasing bulk-flexibility

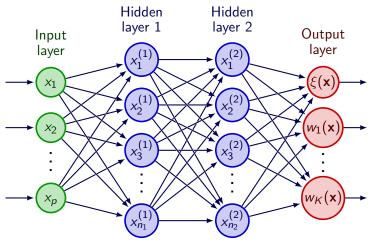


# Increasing SPQR weighting



## **xSPQR**

In the presence of covariates, we model  $\mathbf{x} \mapsto (\xi(\mathbf{x}), \mathcal{W}(\mathbf{x}))$  via an MLP:



We refer to this framework as extremal SPQR(xSPQR).

990

# Inference/coviarate importance

- Inference proceeds via maximum likelihood using Adam.
- xSPQR can be pre-trained with an SPQR fit.
- Via the R interface to keras.

- Variable importance (VI) can be the assessed for conditional quantile function  $Q(\tau|\mathbf{x})$  at  $\tau \in (0,1)$  separately of the shape  $\xi(\mathbf{x})$
- Using model-agnostic accumulated local effects (ALEs; Apley and Zhu, 2020).

Apley, D. W. and Zhu, J. (2020). Visualizing the effects of predictor variables in black box supervised learning models. JRSSB, 82:1059–1086

J. Richards (Edinburgh) xSPQR 16/35

# Simulation study

- Covariates  $X_i$ , i = 1, ..., 3, are independent Unif(0,1).
- Response  $Y \mid (\mathbf{X} = \mathbf{x})$  is log-normal $(\mu(\mathbf{x}), \sigma(\mathbf{x}))$  with

$$\mu(\mathbf{x}) = 5(1 - 1/[1 + \exp\{-(1 - 5x_1x_2)\}])$$

and

$$\sigma(\mathbf{x}) = 1/[1 + \exp\{-(1 - 5x_1x_2)\}].$$

- Only  $X_1$  and  $X_2$  act on Y.
- We take the MLP to have two layers, with  $n_h$  nodes and sigmoid activation in each layer.

## Simulation study

 To evaluate estimation accuracy, we compute the integrated conditional 1-Wasserstein distance (IWD)

$$\mathsf{IWD} = \int_{\mathcal{X}} \int_0^1 |Q(y|\mathbf{x}) - \hat{Q}(y|\mathbf{x})| d\mathbf{x},$$

where  $\mathcal{X}$  is the sample space for **X** and  $Q(y|\mathbf{x})$  denotes the conditional quantile function.

 We also consider a tail-calibrated version of the IWD, denoted by tIWD, which is constructed by replacing the limits of the inner integral of (18) with [0.999, 1].

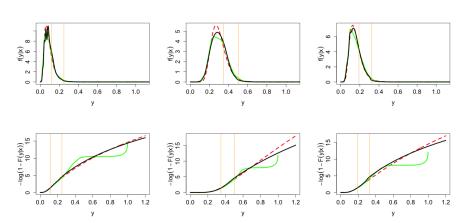
#### Results

| n     | K  | n <sub>h</sub> | tIWD                                        | $(p_a,p_b,c_1)$   |
|-------|----|----------------|---------------------------------------------|-------------------|
| 1000  | 15 | 16             | 11.2 (10.3, 12.3)/ <b>9.23 (7.99, 10.6)</b> | (0.9, 0.999, 5)   |
|       | 15 | 32             | 9.50 (8.63, 10.6)/ <b>9.66 (8.18, 11.2)</b> | (0.925, 0.999, 5) |
|       | 25 | 16             | 12.0 (11.2, 13.0)/ <b>9.56 (8.42, 10.9)</b> | (0.925, 0.999, 5) |
|       | 25 | 32             | 9.20 (8.31, 9.96)/ <b>9.80 (8.70, 11.1)</b> | (0.925, 0.999, 5) |
| 10000 | 15 | 16             | 10.6 (9.51, 11.3)/ <b>7.08 (6.40, 7.85)</b> | (0.75, 0.99, 25)  |
|       | 15 | 32             | 10.7 (10.0, 11.6)/ <b>6.99 6.36, 8.05)</b>  | (0.75, 0.99, 25)  |
|       | 25 | 16             | 8.60 (7.33, 10.0)/ <b>5.56 (4.45, 6.86)</b> | (0.75, 0.99, 25)  |
|       | 25 | 32             | 10.2 (9.40, 16.6)/ <b>5.29 (4.59, 6.50)</b> | (0.75, 0.99, 25)  |

Median (25%,75% quantiles) of tIWD estimates are reported for the original/heavy-tailed SPQR model, with the hyper-parameters  $(p_a, p_b, c_1)$  optimised for each row. Lower values are better.

J. Richards (Edinburgh)

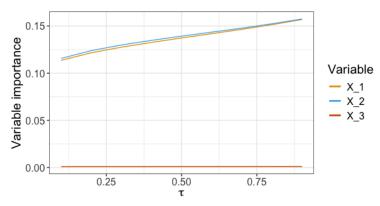
## Test density estimation



Density (top) and log-survival (bottom) functions.

True, SPQR, and xSPQR.

## Variable importance



VI scores  $(10^{-2})$  for  $\xi(\mathbf{x})$ : 1.56, 2.34, 0.09.

J. Richards (Edinburgh)

## Case study: US wildfire burnt areas

- Burnt areas for over 10,000 moderate and large wildfires in the US, 1990–2020 (Lawler and Shaby, 2024).
- First and last 5 years used for testing. Model trained for 1995–2015.
- This leaves **6416 fires** for training and **3344 fires** for testing.

Lawler, E. S. and Shaby, B. A. (2024). Anthropogenic and meteorological effects on the counts and sizes of moderate and extreme wildfires. *Environmetrics*, 35(7):e2873

J. Richards (Edinburgh) xSPQR 22 / 35

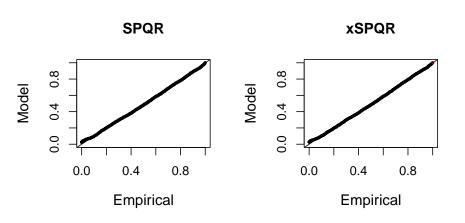
# Case study: US wildfire burnt areas

- We model the impacts of X =
  - pr\_prev: total precip. last year;
  - pr\_curr: total precip. this month;
  - rmin: relative humidity;
  - tmax: maximum temperature;
  - wspd: windspeed;
  - fire\_yr: fire year;

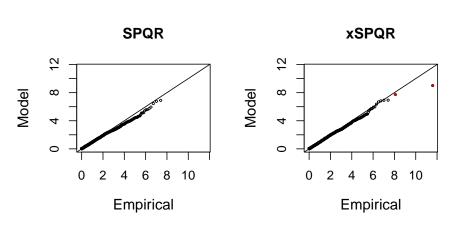
on 
$$Y = \sqrt{\text{Burnt area}}$$
.

- Model hyper-parameters/MLP architecture optimised via grid-search:
  - We here use a 2-layered MLP with  $N_h = 12$  nodes per layer, sigmoid activations, and K = 25 basis functions.
  - We also constrain  $\xi(\mathbf{x}) > 0$ .

#### Model fits - bulk

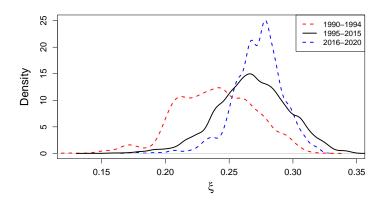


#### Model fits - tail



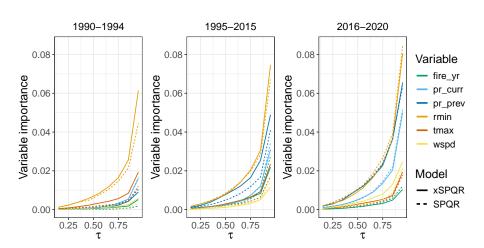
Red test points are impossible with SPQR.

# Estimates of $\xi(\mathbf{x})$



Density of the estimated  $\xi(\mathbf{x})$ , stratified by time period.

## Relative variable importance - bulk



# Relative variable importance - tail

| Time period | $\mathtt{pr}_{\mathtt{-}}\mathtt{prev}$ | rmin | tmax | wspd | $\mathtt{pr}_{\mathtt{-}}\mathtt{curr}$ | $\mathtt{fire}_{\mathtt{-}}\mathtt{yr}$ |
|-------------|-----------------------------------------|------|------|------|-----------------------------------------|-----------------------------------------|
| 1990-1994   | 2.35                                    | 2.08 | 1.41 | 0.90 | 0.91                                    | 0.22                                    |
| 1995-2015   | 2.87                                    | 2.13 | 1.82 | 1.72 | 1.21                                    | 0.61                                    |
| 2016-2020   | 2.39                                    | 1.69 | 1.42 | 2.26 | 1.58                                    | 0.50                                    |

# Spatial variation in quantiles

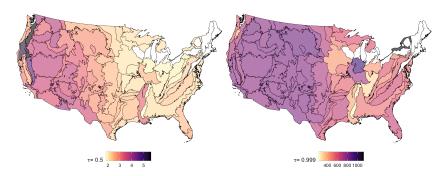


Figure: Estimates of the median (left) and 0.999-quantile (right) of burnt area (in 1000s of acres) for all observed wildfires, averaged over L3 ecoregions. Transparent regions do not include any observed wildfires.

J. Richards (Edinburgh) xSPQR 29/35

#### Conclusion

- Very flexible density regression model that is EVT-compliant.
- Requires no modelling of an intermediate exceedance threshold and provides a characterisation of the full density.
- Fast inference time, using Keras in R.
- Easily extendable to full real support and lower-tailed GP.
- Majumder, R. and Richards, J. (2025+). Semi-parametric bulk and tail regression using spline-based neural networks. arxiv:2504.19994.



#### References I

- Allouche, M., Girard, S., and Gobet, E. (2024). Estimation of extreme quantiles from heavy-tailed distributions with neural networks. *Statistics and Computing*, 34(1):12.
- Apley, D. W. and Zhu, J. (2020). Visualizing the effects of predictor variables in black box supervised learning models. *Journal of the Royal Statistical Society: Series B* (*Methodology*), 82:1059–1086.
- Castro-Camilo, D., Huser, R., and Rue, H. (2022). Practical strategies for generalized extreme value-based regression models for extremes. *Environmetrics*, 33(6):e2742.
- Chavez-Demoulin, V. and Davison, A. C. (2005). Generalized additive modelling of sample extremes. *Journal of the Royal Statistical Society Series C: Applied Statistics*, 54(1):207–222.
- Cisneros, D., Richards, J., Dahal, A., Lombardo, L., and Huser, R. (2024). Deep graphical regression for jointly moderate and extreme Australian wildfires. *Spatial Statistics*, 59:100811.
- Farkas, S., Heranval, A., Lopez, O., and Thomas, M. (2024). Generalized Pareto regression trees for extreme event analysis. *Extremes*, 27(3):437–477.
- Gnecco, N., Terefe, E. M., and Engelke, S. (2024). Extremal random forests. *Journal of the American Statistical Association*, 119(548):3059–3072.

#### References II

- Greenwell, B. M., Boehmke, B. C., and McCarthy, A. J. (2018). A simple and effective model-based variable importance measure. arXiv preprint arXiv:1805.04755.
- Koh, J. (2023). Gradient boosting with extreme-value theory for wildfire prediction. *Extremes*, 26(2):273–299.
- Lawler, E. S. and Shaby, B. A. (2024). Anthropogenic and meteorological effects on the counts and sizes of moderate and extreme wildfires. *Environmetrics*, 35(7):e2873.
- Pasche, O. C. and Engelke, S. (2024). Neural networks for extreme quantile regression with an application to forecasting of flood risk. *The Annals of Applied Statistics*, 18(4):2818–2839.
- Ramsay, J. O. (1988). Monotone Regression Splines in Action. *Statistical Science*, 3(4):425 441.
- Velthoen, J., Dombry, C., Cai, J.-J., and Engelke, S. (2023). Gradient boosting for extreme quantile regression. *Extremes*, 26(4):639–667.
- Xu, S. G. and Reich, B. J. (2021). Bayesian nonparametric quantile process regression and estimation of marginal quantile effects. *Biometrics*, 79:151–164.
- Youngman, B. D. (2019). Generalized additive models for exceedances of high thresholds with an application to return level estimation for US wind gusts. *Journal of the American Statistical Association*, 114(528):1865–1879.

## Appendix: construction of M-splines

Defined on a set of K + d knots,  $t_1, \ldots, t_{K+d}$ , which we take to be empirical quantiles of the training Y with equally-spaced levels. For d = 1.

$$M_k(y|d) = egin{cases} rac{1}{t_{k+1}-t_k}, & t_k \leq y < t_{k+1}, \ 0, & ext{otherwise}. \end{cases}$$

and, for d > 1,

$$M_k(y|d) = \frac{d[(y-t_k)M_k(y|d-1) + (t_{k+d}-y)M_{k+1}(y|d-1)]}{(d-1)(t_{k+d}-t_k)}.$$

For SPQR/xSPQR, d = 3.

#### Appendix: variable importance scores

Consider a generic differentiable function  $g(\mathbf{x})$ , where  $\mathbf{x} = (x_1, \dots, x_p)$  is the vector of covariates. The sensitivity of  $g(\mathbf{x})$  to covariate  $x_j$  is quantified by the partial derivative

$$\dot{g}_j(x_j) = \frac{\partial g(\mathbf{x})}{\partial x_j}.$$

The accumulated local effect (ALE) of  $x_j$  on  $g(\cdot)$  is then defined as

$$\mathsf{ALE}_j(x_j;g) = \int_{z_{0,j}}^{x_j} \mathbb{E}[\dot{g}_j(x_j)|x_j = z_j] \mathrm{d}z_j,$$

where  $z_{0,j}$  is an approximate lower bound for  $x_j$ .

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 釣 9 C C

# Appendix: variable importance scores (cont.)

Following Greenwell et al. (2018), we measure heterogeneity of the effect of  $X_j$  on  $g(\cdot)$  by taking the standard deviation of  $ALE_j(X_j;g)$  with respect to  $X_j$ .

The variable importance (VI) score for  $X_j$  on  $g(\cdot)$  is

$$VI_j(g) = \sqrt{Var_{X_j}[ALE_j(X_j;g)]}.$$

For xSPQR, replace  $g(\cdot)$  with the conditional  $\tau$ -quantile function or  $\xi(\mathbf{x})$ .