Generative modelling of multivariate geometric extremes using normalising flows

Lambert De Monte¹

Joint work with Raphaël Huser², Ioannis Papastathopoulos¹, Jordan Richards¹

 $^{^{}m 1}$ University of Edinburgh and Maxwell Institute, $^{
m 2}$ King Abdullah University of Science and Technology

Presentation Overview

- Geometric extreme value theory
- Statistical inference
- 3 Simulation study
- 4 An application to low and high wind speeds

$$N_n := \left\{ \frac{X_1}{\log(n)}, \dots, \frac{X_n}{\log(n)} \right\}$$

$$n = 100$$

$$N_n := \left\{ \frac{X_1}{\log(n)}, \dots, \frac{X_n}{\log(n)} \right\}$$

$$n = 1000$$

$$N_n := \left\{ \frac{X_1}{\log(n)}, \dots, \frac{X_n}{\log(n)} \right\}$$
 $n = 10000$

$$N_n := \left\{ \frac{X_1}{\log(n)}, \dots, \frac{X_n}{\log(n)} \right\}$$

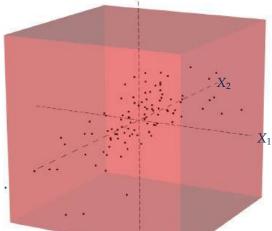
$$n = 100000$$

$$N_n := \left\{ \frac{X_1}{\log(n)}, \dots, \frac{X_n}{\log(n)} \right\}_{X_3}$$

$$n = 1000000$$

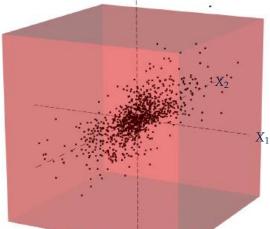
Let $X_1, X_2, \ldots \in \mathbb{R}^d$ be iid draws from \mathbb{P}_X with standard Laplace marginal distributions, and

$$N_n := \left\{ \frac{X_1}{\log(n)}, \dots, \frac{X_n}{\log(n)} \right\} \stackrel{\mathbb{P}}{\to} G \subseteq [-1, 1]^d$$



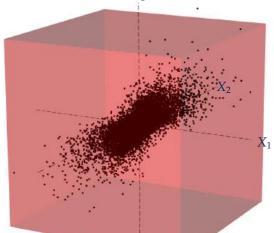
Let $X_1, X_2, \ldots \in \mathbb{R}^d$ be iid draws from \mathbb{P}_X with standard Laplace marginal distributions, and

$$N_n := \left\{ \frac{X_1}{\log(n)}, \dots, \frac{X_n}{\log(n)} \right\} \stackrel{\mathbb{P}}{\to} G \subseteq [-1, 1]^d$$



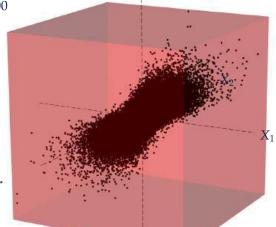
Let $X_1, X_2, \ldots \in \mathbb{R}^d$ be iid draws from \mathbb{P}_X with standard Laplace marginal distributions, and

$$N_n := \left\{ \frac{X_1}{\log(n)}, \ldots, \frac{X_n}{\log(n)} \right\} \stackrel{\mathbb{P}}{\to} G \subseteq [-1, 1]^d$$

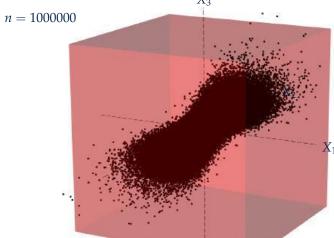


Let $X_1, X_2, \ldots \in \mathbb{R}^d$ be iid draws from \mathbb{P}_X with standard Laplace marginal distributions, and

$$N_n := \left\{ \frac{X_1}{\log(n)}, \ldots, \frac{X_n}{\log(n)} \right\} \stackrel{\mathbb{P}}{\to} G \subseteq [-1, 1]^d$$

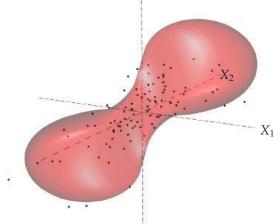


$$N_n := \left\{ \frac{X_1}{\log(n)}, \ldots, \frac{X_n}{\log(n)} \right\} \stackrel{\mathbb{P}}{\to} G \subseteq [-1, 1]^d$$

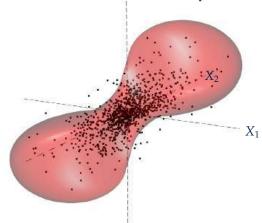


Let $X_1, X_2, \ldots \in \mathbb{R}^d$ be iid draws from \mathbb{P}_X with standard Laplace marginal distributions, and

$$N_n := \left\{ \frac{X_1}{\log(n)}, \dots, \frac{X_n}{\log(n)} \right\} \stackrel{\mathbb{P}}{\to} \mathbf{G} \subseteq [-1, 1]^d$$

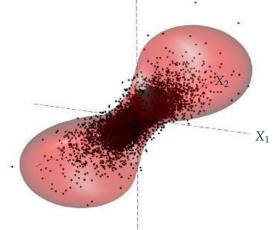


$$N_n := \left\{ \frac{X_1}{\log(n)}, \dots, \frac{X_n}{\log(n)} \right\} \stackrel{\mathbb{P}}{\to} \mathbf{G} \subseteq [-1, 1]^d$$
 $N_n := 1000$



Let $X_1, X_2, \ldots \in \mathbb{R}^d$ be iid draws from \mathbb{P}_X with standard Laplace marginal distributions, and

$$N_n := \left\{ \frac{X_1}{\log(n)}, \dots, \frac{X_n}{\log(n)} \right\} \stackrel{\mathbb{P}}{\to} \mathbf{G} \subseteq [-1, 1]^d$$

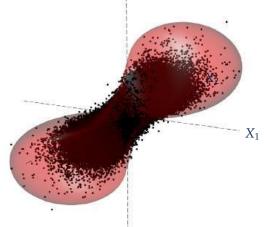


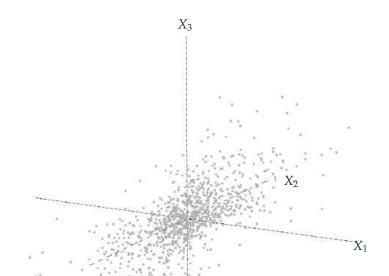
$$N_n := \left\{ \frac{X_1}{\log(n)}, \dots, \frac{X_n}{\log(n)} \right\} \stackrel{\mathbb{P}}{\to} G \subseteq [-1, 1]^d$$

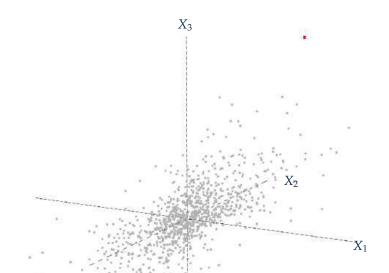
$$n = 100000$$

Let $X_1, X_2, \ldots \in \mathbb{R}^d$ be iid draws from \mathbb{P}_X with standard Laplace marginal distributions, and

$$N_n := \left\{ \frac{X_1}{\log(n)}, \dots, \frac{X_n}{\log(n)} \right\} \stackrel{\mathbb{P}}{\to} \mathbf{G} \subseteq [-1, 1]^d$$







$$R := ||X||_2 > 0, \qquad W := X/R \in \mathbb{S}^{d-1}.$$

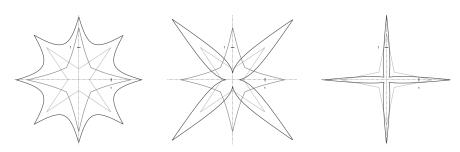
$$R := ||X||_2 > 0, \qquad W := X/R \in \mathbb{S}^{d-1}.$$

Starshaped sets ★ – A basis for our model construction

- A set $\mathcal{B} \in \mathbb{R}^d$ is starshaped if there exists a set $\ker(\mathcal{B}) \subseteq \mathcal{B}$ such that for $x \in \ker(\mathcal{B})$ and for all $y \in \mathcal{B}$, the segment $[x : y] \in \mathcal{B}$.
- A set $\mathcal{B} \in \bigstar$ is in one-to-one correspondence with a radial function

$$r_{\mathcal{B}}(w) = \sup\{\lambda \in \mathbb{R} : \lambda w \in \mathcal{B}\}, \quad w \in \mathbb{S}^{d-1}.$$

• Starshaped sets admit algebraic operations via their radial functions



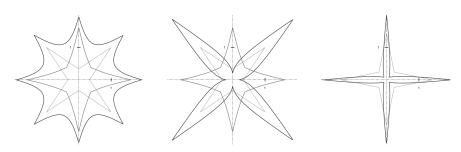
¹Hansen et al. (2020)

Starshaped sets ★ – A basis for our model construction

- A set $\mathcal{B} \in \mathbb{R}^d$ is starshaped if there exists a set $\ker(\mathcal{B}) \subseteq \mathcal{B}$ such that for $x \in \ker(\mathcal{B})$ and for all $y \in \mathcal{B}$, the segment $[x : y] \in \mathcal{B}$.
- ullet A set $\mathcal{B} \in \bigstar$ is in one-to-one correspondence with a radial function

$$r_{\mathcal{B}}(w) = \sup\{\lambda \in \mathbb{R} : \lambda w \in \mathcal{B}\}, \quad w \in \mathbb{S}^{d-1}.$$

• Starshaped sets admit algebraic operations via their radial functions



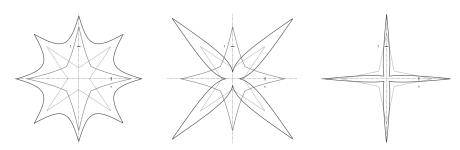
¹Hansen et al. (2020)

Starshaped sets ★ – A basis for our model construction

- A set $\mathcal{B} \in \mathbb{R}^d$ is starshaped if there exists a set $\ker(\mathcal{B}) \subseteq \mathcal{B}$ such that for $x \in \ker(\mathcal{B})$ and for all $y \in \mathcal{B}$, the segment $[x : y] \in \mathcal{B}$.
- ullet A set $\mathcal{B} \in \bigstar$ is in one-to-one correspondence with a radial function

$$r_{\mathcal{B}}(w) = \sup\{\lambda \in \mathbb{R} : \lambda w \in \mathcal{B}\}, \quad w \in \mathbb{S}^{d-1}.$$

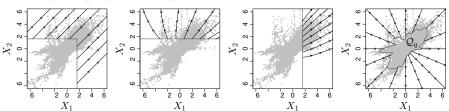
• Starshaped sets admit algebraic operations via their radial functions:



¹Hansen et al. (2020)

Geometric multivariate EVT: Motivation

- Interest in gaining more insight into the (extremal) dependence structure of a random vector $X = (X_1, \dots, X_d) \in \mathbb{R}^d$.
- Extrapolating beyond the range of observed data



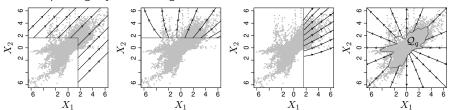
Directions along which MEVT frameworks allow extrapolation to tail regions: (a) MRV, (b) and (c) conditional extremes, (d) geometric extremes.

• Effectively, we want to study the random variable

$$(R, W) \mid \{R \notin \mathcal{Q}_q\}.$$

Geometric multivariate EVT: Motivation

- Interest in gaining more insight into the (extremal) dependence structure of a random vector $X = (X_1, \dots, X_d) \in \mathbb{R}^d$.
- Extrapolating beyond the range of observed data:



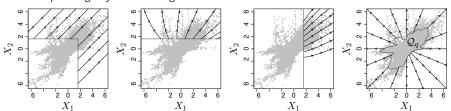
Directions along which MEVT frameworks allow extrapolation to tail regions: (a) MRV, (b) and (c) conditional extremes, (d) geometric extremes.

• Effectively, we want to study the random variable

 $(R, W) \mid \{R \notin \mathcal{Q}_q\}.$

Geometric multivariate EVT: Motivation

- Interest in gaining more insight into the (extremal) dependence structure of a random vector $X = (X_1, \dots, X_d) \in \mathbb{R}^d$.
- Extrapolating beyond the range of observed data:



Directions along which MEVT frameworks allow extrapolation to tail regions: (a) MRV, (b) and (c) conditional extremes, (d) geometric extremes.

• Effectively, we want to study the random variable

$$(R, \mathbf{W}) \mid \{R \notin \mathcal{Q}_q\}.$$

The quantile set Q_q

ullet We let \mathcal{Q}_q via the q-th quantile of $R \mid W = w$, that is, it satisfies

$$\mathbb{P}[R \leq r_{\mathcal{Q}_q}(w) \mid W = w] = q, \quad \text{for all } w \in \mathbb{S}^{d-1}.$$

• Q_q then satisfies that

$$\mathbb{P}[X \notin \mathcal{Q}_q] = 1 - q$$
, and $W \mid \{X \notin \mathcal{Q}_q\} \stackrel{d}{=} W$.

Lett: Independent samples ($n=2\times 10^{\circ}$) from a bivariate distribution anying true quantile set $Q_{0.95}$, boundary $\partial Q_{0.95}$ (solid black line) and complement $Q'_{0.95}$, Centre: Empirical proportion of exceedances binned by angular regions with true exceedance probability (0.05) in red. Right: Circular histogram of the density of all sampled angles (light grey) and of exceedance angles (dark grey) with concentric circles denoting density level sets.

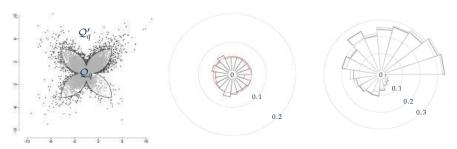
The quantile set Q_q

• We let Q_q via the q-th quantile of $R \mid W = w$, that is, it satisfies

$$\mathbb{P}[R \leq r_{\mathcal{Q}_q}(\mathbf{w}) \mid W = \mathbf{w}] = q, \quad \text{for all } \mathbf{w} \in \mathbb{S}^{d-1}.$$

• Q_q then satisfies that

$$\mathbb{P}[X \notin \mathcal{Q}_q] = 1 - q, \qquad \text{and} \qquad W \mid \{X \notin \mathcal{Q}_q\} \stackrel{d}{=} W.$$



Left: Independent samples $(n=2\times 10^4)$ from a bivariate distribution having true quantile set $\mathcal{Q}_{0.95}$, boundary $\partial\mathcal{Q}_{0.95}$ (solid black line) and complement $\mathcal{Q}'_{0.95}$. Centre: Empirical proportion of exceedances binned by angular regions with true exceedance probability (0.05) in red. Right: Circular histogram of the density of all sampled angles (light grey) and of exceedance angles (dark grey) with concentric circles denoting density level sets.

Exceedances of Q_q

- Note that the event $\{X = RW \notin \mathcal{Q}_q\}$ corresponds to $\{R > r_{\mathcal{Q}_q}(W)\}$.
- Further, Papastathopoulos et al. (2023) show conditions under which there exist a starshaped set *G* such that

$$\left(\frac{R - r_{\mathcal{Q}_q}(W)}{r_{\mathcal{G}}(W)}, W\right) \mid \{R > r_{\mathcal{Q}_q}(W)\} \xrightarrow{d} (Z, V), \quad \text{as } q \to 1,$$
 (1)

where $Z \sim \operatorname{Exp}(1)$, $V \sim \mathbb{P}_W$

Exceedances of Q_q

- Note that the event $\{X = RW \notin \mathcal{Q}_q\}$ corresponds to $\{R > r_{\mathcal{Q}_q}(W)\}$.
- ullet Further, Papastathopoulos et al. (2023) show conditions under which there exist a starshaped set G such that

$$\left(\frac{R - r_{\mathcal{Q}_q}(W)}{r_{\mathcal{G}}(W)}, W\right) \mid \{R > r_{\mathcal{Q}_q}(W)\} \xrightarrow{d} (Z, V), \quad \text{as } q \to 1,$$
 (1)

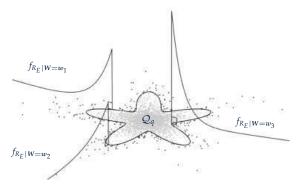
where $Z \sim \text{Exp}(1)$, $V \sim \mathbb{P}_W$.

Exceedances of Q_q

- Note that the event $\{X = RW \notin \mathcal{Q}_q\}$ corresponds to $\{R > r_{\mathcal{Q}_q}(W)\}$.
- ullet Further, Papastathopoulos et al. (2023) show conditions under which there exist a starshaped set G such that

$$\left(\frac{R - r_{\mathcal{Q}_q}(W)}{r_{\mathcal{G}}(W)}, W\right) \mid \{R > r_{\mathcal{Q}_q}(W)\} \xrightarrow{d} (Z, V), \quad \text{as } q \to 1,$$
 (2)

where $Z \sim \text{Exp}(1)$, $V \sim \mathbb{P}_W$.



PROPOSED MODELS

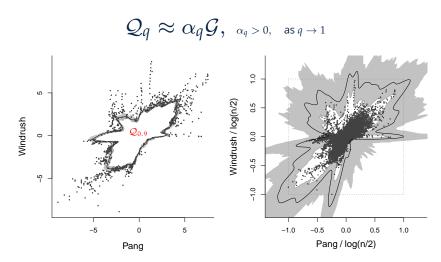
Links between parameters and models

Under appropriate convergence conditions¹, it can be shown that the quantile set Q_q is asymptotically $(q \to 1)$ a scale multiple of the scaling/limit set \mathcal{G} , that is,

$$\mathcal{Q}_{q}pprox lpha_{q}\mathcal{G}, \;\;_{lpha_{q}\,>\,0,\;\;\;$$
 as $_{q}\, o\,1}$

Links between parameters and models

Under appropriate convergence conditions¹, it can be shown that the quantile set Q_q is asymptotically $(q \to 1)$ a scale multiple of the scaling/limit set \mathcal{G} , that is,



¹Wadsworth & Campbell (2024)

Links between parameters and models

If the density of X is homothetic with respect to $r_{\mathcal{G}}^{-1}$, that is,

$$f_X(x) = f_0(r_{\mathcal{G}}^{-1}(x)), \quad x \in \mathbb{R}^d,$$

then ${\mathcal G}$ and ${\mathcal W}$ can be linked 1 through

$$r_{\mathcal{W}}(\mathbf{w}) = f_{\mathbf{W}}(\mathbf{w}) = \frac{r_{\mathcal{G}}(\mathbf{w})^d}{d|\mathcal{G}|}, \quad \mathbf{w} \in \mathbb{S}^{d-1}.$$

¹Papastathopoulos et al. (2023)

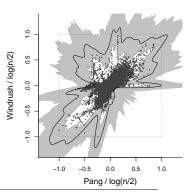
Links between parameters and models

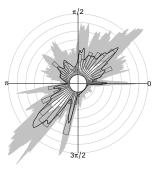
If the density of X is homothetic with respect to $r_{\mathcal{G}}^{-1}$, that is,

$$f_X(x) = f_0(r_{\mathcal{G}}^{-1}(x)), \quad x \in \mathbb{R}^d,$$

then ${\mathcal G}$ and ${\mathcal W}$ can be linked 1 through

$$r_{\mathcal{W}}(\mathbf{w}) = f_{\mathbf{W}}(\mathbf{w}) = \frac{r_{\mathcal{G}}(\mathbf{w})^d}{d|\mathcal{G}|}, \quad \mathbf{w} \in \mathbb{S}^{d-1}.$$





¹Papastathopoulos et al. (2023)

ullet Any positive function $r_{\mathcal{B}}$ defined on \mathbb{S}^{d-1} can be written as

$$r_{\mathcal{B}}(w) = \beta_{\mathcal{B}} f_{\mathcal{B}}(w), \quad w \in \mathbb{S}^{d-1},$$

for a constant $\beta_{\mathcal{B}} = \int_{\mathbb{S}^{d-1}} r_{\mathcal{B}}(w) \, \mathrm{d}w$ and density $f_{\mathcal{B}}$ integrating to 1 on \mathbb{S}^{d-1} .

• Using the links \mathcal{G} - \mathcal{Q}_q and \mathcal{G} - \mathcal{W} , we can formulate a statistical model

$$r_{\mathcal{Q}_q}(w) = \beta_{\mathcal{Q}_q} f_W(w)^d$$
 and $r_{\mathcal{G}}(w) = \beta_{\mathcal{G}} f_W(w)^d$, $w \in \mathbb{S}^{d-1}$

ullet Any positive function $r_{\mathcal{B}}$ defined on \mathbb{S}^{d-1} can be written as

$$r_{\mathcal{B}}(w) = \beta_{\mathcal{B}} f_{\mathcal{B}}(w), \quad w \in \mathbb{S}^{d-1},$$

for a constant $\beta_{\mathcal{B}} = \int_{\mathbb{S}^{d-1}} r_{\mathcal{B}}(w) \, \mathrm{d}w$ and density $f_{\mathcal{B}}$ integrating to 1 on \mathbb{S}^{d-1} .

• Using the links \mathcal{G} - \mathcal{Q}_q and \mathcal{G} - \mathcal{W} , we can formulate a statistical model

$$r_{\mathcal{Q}_q}(w) = \beta_{\mathcal{Q}_q} f_W(w)^d \text{ and } r_{\mathcal{G}}(w) = \beta_{\mathcal{G}} f_W(w)^d, \qquad w \in \mathbb{S}^{d-1}.$$

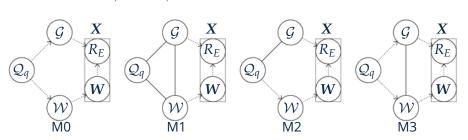
ullet Any positive function $r_{\mathcal{B}}$ defined on \mathbb{S}^{d-1} can be written as

$$r_{\mathcal{B}}(w) = \beta_{\mathcal{B}} f_{\mathcal{B}}(w), \quad w \in \mathbb{S}^{d-1},$$

for a constant $\beta_{\mathcal{B}} = \int_{\mathbb{S}^{d-1}} r_{\mathcal{B}}(w) dw$ and density $f_{\mathcal{B}}$ integrating to 1 on \mathbb{S}^{d-1} .

• Using the links \mathcal{G} - \mathcal{Q}_q and \mathcal{G} - \mathcal{W} , we can formulate a statistical model

$$r_{\mathcal{Q}_q}(w) = \beta_{\mathcal{Q}_q} f_W(w)^d$$
 and $r_{\mathcal{G}}(w) = \beta_{\mathcal{G}} f_W(w)^d$, $w \in \mathbb{S}^{d-1}$.



- We introduce a deformation set $\mathcal D$ with radial function $f_{\mathcal D}:\mathbb S^{d-1} \to [0,\infty).$
- We can then weaken the equality assumptions of models M1, M2, and M3 via

$$r_{\mathcal{Q}_q}(w) = \beta_q f_{\mathcal{D}}(w) f_{\mathcal{G}}(w), \quad w \in \mathbb{S}^{d-1},$$

and

$$r_{\mathcal{G}}(w) = \beta_{\mathcal{G}} \{ f_{\mathcal{D}}(w) f_{\mathcal{W}}(w) \}^{1/d}, \quad w \in \mathbb{S}^{d-1},$$

- We introduce a deformation set $\mathcal D$ with radial function $f_{\mathcal D}:\mathbb S^{d-1} \to [0,\infty).$
- We can then weaken the equality assumptions of models M1, M2, and M3 via

$$r_{\mathcal{Q}_q}(w) = \beta_q f_{\mathcal{D}}(w) f_{\mathcal{G}}(w), \quad w \in \mathbb{S}^{d-1},$$

and

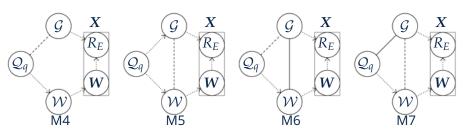
$$r_{\mathcal{G}}(w) = \beta_{\mathcal{G}} \{ f_{\mathcal{D}}(w) f_{W}(w) \}^{1/d}, \quad w \in \mathbb{S}^{d-1},$$

- We introduce a deformation set $\mathcal D$ with radial function $f_{\mathcal D}:\mathbb S^{d-1}\to [0,\infty).$
- We can then weaken the equality assumptions of models M1, M2, and M3 via

$$r_{\mathcal{Q}_d}(w) = \beta_q f_{\mathcal{D}}(w) f_{\mathcal{G}}(w), \quad w \in \mathbb{S}^{d-1},$$

and

$$r_{\mathcal{G}}(w) = \beta_{\mathcal{G}} \{ f_{\mathcal{D}}(w) f_{W}(w) \}^{1/d}, \quad w \in \mathbb{S}^{d-1},$$



• Models M4 to M7 are identifiable as is, but we impose penalisation on \mathcal{D} .

STATISTICAL INFERENCE

Normalising flows¹ and density estimation²

• A normalising flow (NF) learns a transformation mapping a random variable $Y \in \mathcal{Y}$ with unknown distribution to that of a known, base variable $Z \in \mathcal{Z}$.

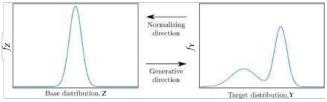


Figure 1 of Kobyzev et al. (2021)

¹Tabak & Vanden-Eijnden (2010), ²Dinh et al. (2015)

Normalising flows¹ and density estimation²

• A normalising flow (NF) learns a transformation mapping a random variable $Y \in \mathcal{Y}$ with unknown distribution to that of a known, base variable $\mathbf{Z} \in \mathcal{Z}$.

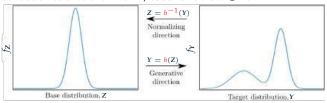


Figure 1 of Kobyzev et al. (2021)

• Assuming Y admits a density on \mathcal{Y} , this problem can be phrased as aiming to infer a (bijective and differentiable) transformation function h such that

$$f_Y(y) = f_Z\{h^{-1}(y)\} \left| \frac{\partial h^{-1}(y)}{\partial y} \right|, \quad y \in \mathcal{Y}.$$

In practice, h is modelled as a composition of many simple bijective transformations h_1, \ldots, h_k , i.e. $h = h_1 \circ h_2 \circ \ldots \circ h_k$.

¹Tabak & Vanden-Eijnden (2010), ²Dinh et al. (2017)

A map from the hypersphere to the hypercylinder

ullet Transform the observations and models from \mathbb{S}^{d-1} to a cylindrical space \mathbb{C}^{d-1} (by abuse of notation).

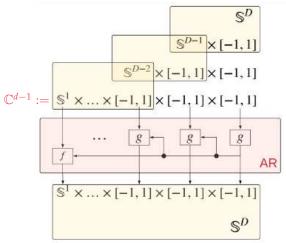
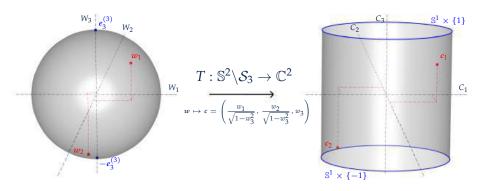


Figure 6 of Rezende et al. (2020)

A map from the hypersphere \mathbb{S}^2 to the hypercylinder \mathbb{C}^2



A model for PDFs and positive functions on \mathbb{S}^{d-1}

• It follows from the map T that a target $\mathsf{PDF} f_{\mathcal{B}}: \mathbb{S}^{d-1} \backslash \mathcal{S}_d \to [0,\infty)$, describing the shape of a starshaped set $\mathcal{B} \in \mathbb{R}^d$ a.e., can be written as

$$f_{\mathcal{B}}(w) = f_{\mathbf{Y}}(T(w))|\partial T(w)/\partial w|, \quad w \in \mathbb{S}^{d-1} \setminus \mathcal{S}_d,$$

for a target PDF f_Y defined on \mathbb{C}^{d-1} .

• Using the NFs formulation, $f_{\mathcal{B}}$ can in turn be modelled in terms of a known base PDF $f_{\mathcal{Z}}:\mathbb{C}^{d-1}\to [0,\infty)$ and a normalising flow $h_{\mathcal{B}}$ as

$$f_{\mathcal{B}}(w) = f_{\mathcal{Z}}\left\{h_{\mathcal{B}}^{-1}(T(w))\right\} \left| \frac{\partial h_{\mathcal{B}}^{-1}(T(w))}{\partial T(w)} \right| \left| \frac{\partial T(w)}{\partial w} \right|, \quad w \in \mathbb{S}^{d-1} \setminus \mathcal{S}_d.$$

where $|\partial T(w)/w|$ is the Jacobian of the recursive transformation T.

• Further, a model for any positive/radial function $r_{\mathcal{B}}$ of a starshaped set \mathcal{B} – such as the quantile set \mathcal{Q}_q or the scaling set \mathcal{G} – can be obtained via

$$r_{\mathcal{B}} = \beta_{\mathcal{B}} f_{\mathcal{B}}$$

where $f_{\mathcal{B}}$ is as above, and $\beta_{\mathcal{B}} > 0$ is a coefficient to be learned alongside the NF $h_{\mathcal{B}}$.

¹Stimper et al. (2023)

A model for PDFs and positive functions on \mathbb{S}^{d-1}

• It follows from the map T that a target $\mathsf{PDF} f_{\mathcal{B}} : \mathbb{S}^{d-1} \backslash \mathcal{S}_d \to [0,\infty)$, describing the shape of a starshaped set $\mathcal{B} \in \mathbb{R}^d$ a.e., can be written as

$$f_{\mathcal{B}}(w) = f_{\mathbf{Y}}(T(w))|\partial T(w)/\partial w|, \quad w \in \mathbb{S}^{d-1} \setminus \mathcal{S}_d,$$

for a target PDF f_Y defined on \mathbb{C}^{d-1} .

• Using the NFs formulation, $f_{\mathcal{B}}$ can in turn be modelled in terms of a known base PDF $f_{\mathbf{Z}}:\mathbb{C}^{d-1}\to [0,\infty)$ and a normalising flow $h_{\mathcal{B}}$ as

$$f_{\mathcal{B}}(w) = f_{\mathbf{Z}}\left\{h_{\mathcal{B}}^{-1}(T(w))\right\} \left| \frac{\partial h_{\mathcal{B}}^{-1}(T(w))}{\partial T(w)} \right| \left| \frac{\partial T(w)}{\partial w} \right|, \quad w \in \mathbb{S}^{d-1} \backslash \mathcal{S}_d,$$

where $|\partial T(w)/w|$ is the Jacobian of the recursive transformation T.

• Further, a model for any positive/radial function $r_{\mathcal{B}}$ of a starshaped set \mathcal{B} – such as the quantile set \mathcal{Q}_q or the scaling set \mathcal{G} – can be obtained via

$$r_{\mathcal{B}} = \beta_{\mathcal{B}} f_{\mathcal{B}}$$

where $f_{\mathcal{B}}$ is as above, and $\beta_{\mathcal{B}} > 0$ is a coefficient to be learned alongside the NF $h_{\mathcal{B}}$.

¹Stimper et al. (2023)

A model for PDFs and positive functions on \mathbb{S}^{d-1}

• It follows from the map T that a target $\mathsf{PDF} f_{\mathcal{B}} : \mathbb{S}^{d-1} \backslash \mathcal{S}_d \to [0, \infty)$, describing the shape of a starshaped set $\mathcal{B} \in \mathbb{R}^d$ a.e., can be written as

$$f_{\mathcal{B}}(w) = f_{\mathbf{Y}}(T(w))|\partial T(w)/\partial w|, \quad w \in \mathbb{S}^{d-1} \setminus \mathcal{S}_d,$$

for a target PDF f_Y defined on \mathbb{C}^{d-1} .

• Using the NFs formulation, $f_{\mathcal{B}}$ can in turn be modelled in terms of a known base PDF $f_{\mathbf{Z}}:\mathbb{C}^{d-1}\to [0,\infty)$ and a normalising flow $h_{\mathcal{B}}$ as

$$f_{\mathcal{B}}(w) = f_{Z}\left\{h_{\mathcal{B}}^{-1}(T(w))\right\} \left| \frac{\partial h_{\mathcal{B}}^{-1}(T(w))}{\partial T(w)} \right| \left| \frac{\partial T(w)}{\partial w} \right|, \quad w \in \mathbb{S}^{d-1} \setminus \mathcal{S}_{d},$$

where $|\partial T(w)/w|$ is the Jacobian of the recursive transformation T.

• Further, a model for any positive/radial function $r_{\mathcal{B}}$ of a starshaped set \mathcal{B} – such as the quantile set \mathcal{Q}_q or the scaling set \mathcal{G} – can be obtained via

$$r_{\mathcal{B}} = \beta_{\mathcal{B}} f_{\mathcal{B}}$$

where $f_{\mathcal{B}}$ is as above, and $\beta_{\mathcal{B}} > 0$ is a coefficient to be learned alongside the NF $h_{\mathcal{B}}$.

¹Stimper et al. (2023)

A GRADIENT DESCENT APPROACH

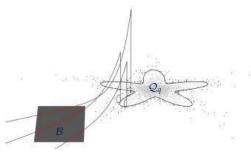
A PyTorch $^{\!1}$ implementation $^{\!2}$ of NFs and composite loss minimisation via the Adam optimiser $^{\!3}$

¹Paszke et al. (2019), ²Stimper et al. (2023), ³Kingma & Ba (2017)

PROBABILITY ESTIMATION

• For any Borel set $\mathcal{B} \in \mathbb{R}^d \setminus \mathcal{Q}_q$,

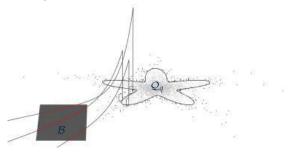
$$\mathbb{P}[X \in \mathcal{B} \mid X \notin \mathcal{Q}_q] = \int_{\mathbb{S}^{d-1}} \int_{\mathcal{B} \cap]0:w)} \frac{1}{r_{\mathcal{G}}(w)} \exp\left\{-\frac{r - r_{\mathcal{Q}_q}(w)}{r_{\mathcal{G}}(w)}\right\} f_W(w) dr dw.$$



 $\bullet~$ For any Borel set $\mathcal{B} \in \mathbb{R}^d \backslash \mathcal{Q}_q$, we use the Monte Carlo integration

$$\mathbb{P}[X \in \mathcal{B} \mid X \notin \mathcal{Q}_q] \stackrel{\mathbb{P}}{\leftarrow} \frac{1}{m} \sum_{i=1}^m \int_{\mathcal{B} \cap]\mathbf{0}: w_i)} \frac{1}{r_{\mathcal{G}}(w_i)} \exp \left\{ -\frac{r - r_{\mathcal{Q}_q}(w_i)}{r_{\mathcal{G}}(w_i)} \right\} \mathrm{d}r, \quad n \to \infty.$$

where $w_1, \ldots, w_m \sim f_W$.

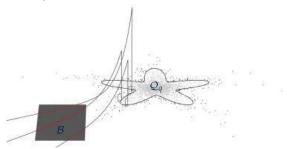


- The integral is exact provided one knows all radial entry and exit points of B.
- ullet The collection $w_1,\ldots,w_m\sim f_W$ is sampled fast using the generative direction of the NF.

• For any Borel set $\mathcal{B} \in \mathbb{R}^d \backslash \mathcal{Q}_q$, we use the Monte Carlo integration

$$\mathbb{P}[X \in \mathcal{B} \mid X \notin \mathcal{Q}_q] \stackrel{\mathbb{P}}{\leftarrow} \frac{1}{m} \sum_{i=1}^m \int_{\mathcal{B} \cap]\mathbf{0}: w_i)} \frac{1}{r_{\mathcal{G}}(w_i)} \exp \left\{ -\frac{r - r_{\mathcal{Q}_q}(w_i)}{r_{\mathcal{G}}(w_i)} \right\} \mathrm{d}r, \quad n \to \infty.$$

where $w_1, \ldots, w_m \sim f_W$.

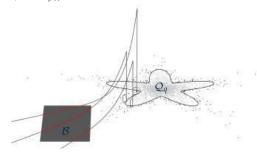


- The integral is exact provided one knows all radial entry and exit points of \mathcal{B} .
- The collection $w_1, \dots, w_m \sim f_W$ is sampled fast using the generative direction of the NF.

• For any Borel set $\mathcal{B} \in \mathbb{R}^d \backslash \mathcal{Q}_q$, we use the Monte Carlo integration

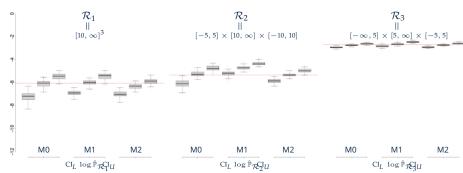
$$\mathbb{P}[X \in \mathcal{B} \mid X \notin \mathcal{Q}_q] \stackrel{\mathbb{P}}{\leftarrow} \frac{1}{m} \sum_{i=1}^m \int_{\mathcal{B} \cap]\mathbf{0}: w_i)} \frac{1}{r_{\mathcal{G}}(w_i)} \exp \left\{ -\frac{r - r_{\mathcal{Q}_q}(w_i)}{r_{\mathcal{G}}(w_i)} \right\} \mathrm{d}r, \quad n \to \infty.$$

where $w_1, \ldots, w_m \sim f_W$.



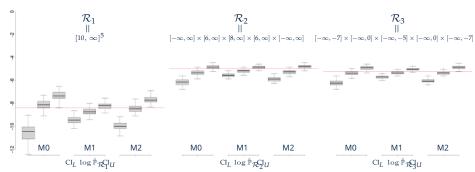
- The integral is exact provided one knows all radial entry and exit points of \mathcal{B} .
- The collection $w_1, \dots, w_m \sim f_W$ is sampled fast using the generative direction of the NF.

Simulation study results – 3 dimensions



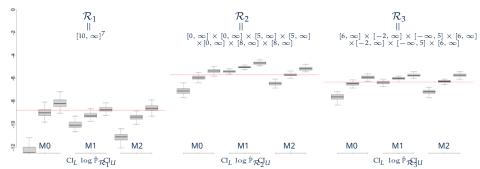
Boxplots of 100 estimated log-probabilities and associated lower- and upper-bounds of 95% bootstrap confidence intervals for the sets $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3 \in \mathbb{R}^3$. $(n=10^4)$.

Simulation study results – 5 dimensions



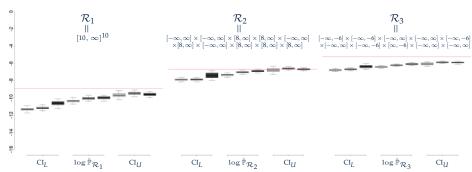
Boxplots of 100 estimated log-probabilities and associated lower- and upper-bounds of 95% bootstrap confidence intervals for the sets $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3 \in \mathbb{R}^5$. $(n=10^4)$.

Simulation study results – 7 dimensions



Boxplots of 100 estimated log-probabilities and associated lower- and upper-bounds of 95% bootstrap confidence intervals for the sets $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3 \in \mathbb{R}^7$. $(n=10^4)$.

Simulation study results – 10 dimensions

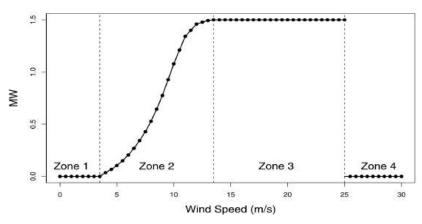


Boxplots of 100 estimated log-probabilities and associated lower- and upper-bounds of 95% bootstrap confidence intervals for the sets $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3 \in \mathbb{R}^{10}$. ($n=5 \times 10^4, 10^5, 2 \times 10^5$).

LOW AND HIGH WIND SPEEDS

In relation to electricity production in the Pacific Northwest, United States

Pacific Northwest region of the United States



Scale-shape homogenisation

Define the windspeed

$$X_{j,m,h}^{o}$$

at station j in month m of the year and hour h.

Scale-shape homogenisation

Define the windspeed

$$X_{j,m,h}^{o}$$

at station j in month m of the year and hour h.

We assume¹

$$X_{j,m,h}^{o} \sim \text{Weibull}(\lambda_{j,m,h} = s_{j,1}(m) + s_{j,2}(h), \kappa_{j,m,h} = s_{j,3}(m) + s_{j,4}(h)),$$
 (3)

where s denotes a cubic cyclic spline on $m \in \{1, \dots, 12\}$ or $h \in \{0, \dots, 23\}$.

¹Elliott et al. (2004)

Scale-shape homogenisation

Define the windspeed

$$X_{j,m,h}^{o}$$

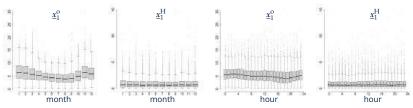
at station j in month m of the year and hour h.

We assume¹

$$X_{j,m,h}^{0} \sim \text{Weibull}(\lambda_{j,m,h} = s_{j,1}(m) + s_{j,2}(h), \kappa_{j,m,h} = s_{j,3}(m) + s_{j,4}(h)),$$
 (4)

where s denotes a cubic cyclic spline on $m \in \{1, ..., 12\}$ or $h \in \{0, ..., 23\}$.

ullet We fit the model using evgam^2 and apply $X^{\operatorname{H}}_{j,m,h}:=(X^{\operatorname{o}}_{j,m,h}/\hat{\lambda}_{j,m,h})^{\hat{\kappa}_{j,m,h}}$



¹Elliott et al. (2004), ²Youngman (2022)

Analysis of station configurations – January at 18:00

(a) Minimises probability of no production

Analysis of station configurations – January at 18:00

(a) Minimises probability of no production

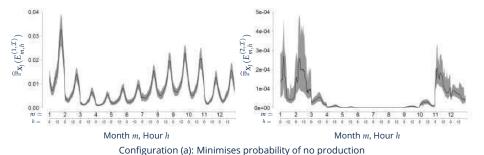
(b) Maximises probability of no production

Analysis of station configurations – January at 18:00

(a) Minimises probability of no production (b) Maximises probability of no production

(c) Maximises probability of full production

Analysis of seasonality of power production – configuration (a)



References

- De Monte, L., Huser, R., Papastathopoulos, I. & Richards, J. (2025), 'Generative modelling of multivariate geometric extremes using normalising flows'.
- Dinh, L., Krueger, D. & Bengio, Y. (2015), NICE: non-linear independent components estimation, in Y. Bengio & Y. LeCun, eds, '3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings'.
- Dinh, L., Sohl-Dickstein, J. & Bengio, S. (2017), 'Density estimation using real nvp'.
- Elliott, D., Schwartz, M. & Scott, G. (2004), Wind resource base, in C. J. Cleveland, ed., 'Encyclopedia of Energy', Elsevier, New York, pp. 465–479.
- Hansen, G., Herburt, I., Martini, H. & Moszyńska, M. (2020), 'Starshaped sets', Aequationes mathematicae 94, 1001-1092.
- Kingma, D. P. & Ba, J. (2017), 'Adam: A method for stochastic optimization'.
- Kobyzev, I., Prince, S. J. & Brubaker, M. A. (2021), 'Normalizing flows: An introduction and review of current methods', IEEE Transactions on Pattern Analysis and Machine Intelligence 43(11), 3964–3979.
- Papastathopoulos, I., De Monte, L., Campbell, R. & Rue, H. (2023), 'Statistical inference for radially-stable generalized pareto distributions and return level-sets in geometric extremes'.
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. & Chintala, S. (2019), 'Pytorch: An imperative style, high-performance deep learning library'.
- Rezende, D. J., Papamakarios, G., Racanière, S., Albergo, M. S., Kanwar, G., Shanahan, P. E. & Cranmer, K. (2020), 'Normalizing flows on tori and spheres'.
- Stimper, V., Liu, D., Campbell, A., Berenz, V., Ryll, L., Schölkopf, B. & Hernández-Lobato, J. M. (2023), 'normflows: A pytorch package for normalizing flows', Journal of Open Source Software 8(86), 5361.
- Tabak, E. G. & Vanden-Eijnden, E. (2010), 'Density estimation by dual ascent of the log-likelihood', Communications in Mathematical Sciences 8(1), 217–233.
- Wadsworth, J. L. & Campbell, R. (2024), 'Statistical inference for multivariate extremes via a geometric approach', Journal of the Royal Statistical Society Series B: Statistical Methodology p. qkae030.
- Youngman, B. D. (2022), 'evgam: An R package for generalized additive extreme value models', J. Stat. Softw. 103(3), 1-26.

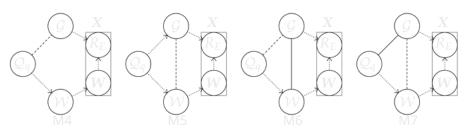
Proposed models

- We introduce a deformation set \mathcal{D} with radial function $f_{\mathcal{D}}: \mathbb{S}^{d-1} \to [0, \infty)$.
- We can then weaken the equality assumptions of models M1, M2, and M3 via

$$r_{\mathcal{Q}_q}(w) = \beta_q f_{\mathcal{D}}(w) f_{\mathcal{G}}(w), \quad w \in \mathbb{S}^{d-1},$$

and

$$r_{\mathcal{G}}(w) = \beta_{\mathcal{G}} \{ f_{\mathcal{D}}(w) f_{\mathcal{W}}(w) \}^{1/d}, \quad w \in \mathbb{S}^{d-1},$$



 Models M4 to M7 are identifiable as is, but I discuss this further in the next section if there are no questions!

Proposed models

- We introduce a deformation set $\mathcal D$ with radial function $f_{\mathcal D}:\mathbb S^{d-1}\to [0,\infty).$
- We can then weaken the equality assumptions of models M1, M2, and M3 via

$$r_{\mathcal{Q}_q}(w) = \beta_q f_{\mathcal{D}}(w) f_{\mathcal{G}}(w), \quad w \in \mathbb{S}^{d-1},$$

and

$$r_{\mathcal{G}}(w) = \beta_{\mathcal{G}} \{ f_{\mathcal{D}}(w) f_{W}(w) \}^{1/d}, \quad w \in \mathbb{S}^{d-1},$$



 Models M4 to M7 are identifiable as is, but I discuss this further in the next section if there are no questions!

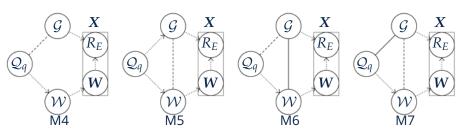
Proposed models

- We introduce a deformation set \mathcal{D} with radial function $f_{\mathcal{D}}: \mathbb{S}^{d-1} \to [0, \infty)$.
- We can then weaken the equality assumptions of models M1, M2, and M3 via

$$r_{\mathcal{Q}_d}(w) = \beta_q f_{\mathcal{D}}(w) f_{\mathcal{G}}(w), \quad w \in \mathbb{S}^{d-1},$$

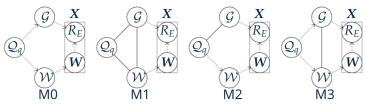
and

$$r_{\mathcal{G}}(w) = \beta_{\mathcal{G}} \{ f_{\mathcal{D}}(w) f_{\mathcal{W}}(w) \}^{1/d}, \quad w \in \mathbb{S}^{d-1},$$



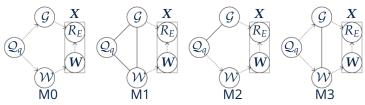
 Models M4 to M7 are identifiable as is, but I discuss this further in the next section if there are no questions!

Recall models M0 to M3:



Model M0 is fitted by sequentially minimising the losses

Recall models M0 to M3:



Model M0 is fitted by sequentially minimising the losses

$$ullet$$
 for \mathcal{Q}_q :

$$\mathcal{L}_{\mathcal{Q}_{q}}\left(\beta_{\mathcal{Q}_{q}}, f_{\mathcal{Q}_{q}} \right; \underline{x}) = \frac{1}{n} \sum_{i=1}^{n} \max \left\{ \left(1 - q\right) \left[\|x_{i}\| - \beta_{\mathcal{Q}_{q}} f_{\mathcal{Q}_{q}} \left(\frac{x_{i}}{\|x_{i}\|} \right) \right], q \left[\|x_{i}\| - \beta_{\mathcal{Q}_{q}} f_{\mathcal{Q}_{q}} \left(\frac{x_{i}}{\|x_{i}\|} \right) \right] \right\}$$

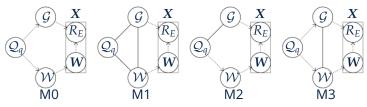
• for \mathcal{G}

$$\mathcal{L}_{\mathcal{G}}(\beta_{\mathcal{G}}, f_{\mathcal{G}} \; ; \; r_{\tilde{\mathcal{Q}}_{q}}, \underline{x}) = -\frac{1}{\#\mathcal{E}} \sum_{i \in \mathcal{E}} \log \left[\left\{ \beta_{\mathcal{G}} f_{\mathcal{G}}(x_{i} / \| x_{i} \|) \right\}^{-1} \exp \left\{ -\frac{\|x_{i}\| - r_{\tilde{\mathcal{Q}}_{q}}\left(x_{i} / \| x_{i} \|\right)}{\beta_{\mathcal{G}} f_{\mathcal{G}}\left(x_{i} / \| x_{i} \|\right)} \right\} \right].$$

o for W:

$$\mathcal{L}_{\mathcal{W}}(f_{\mathbf{W}}; r_{\hat{\mathcal{Q}}_{q}}, \underline{x}) = -\frac{1}{\#\mathcal{E}} \sum_{i \in \mathcal{E}} \log f_{\mathbf{W}}(x_{i}/\|x_{i}\|).$$

Recall models M0 to M3:



- Model M0 is fitted by sequentially minimising the losses
 - for Q_q :

$$\mathcal{L}_{\mathcal{Q}_q}(\beta_{\mathcal{Q}_q}, f_{\mathcal{Q}_q}; \underline{x}) = \frac{1}{n} \sum_{i=1}^n \max \left\{ (1-q) \left[\|x_i\| - \beta_{\mathcal{Q}_q} f_{\mathcal{Q}_q} \left(\frac{x_i}{\|x_i\|} \right) \right], q \left[\|x_i\| - \beta_{\mathcal{Q}_q} f_{\mathcal{Q}_q} \left(\frac{x_i}{\|x_i\|} \right) \right] \right\}.$$

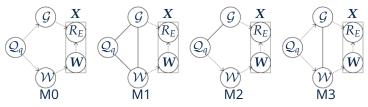
for G

$$\mathcal{L}_{\mathcal{G}}(\beta_{\mathcal{G}}, f_{\mathcal{G}}; r_{\hat{\mathcal{Q}}_{q}}, \underline{x}) = -\frac{1}{\#\mathcal{E}} \sum_{i \in \mathcal{E}} \log \left[\left\{ \beta_{\mathcal{G}} f_{\mathcal{G}}(x_{i}/\|x_{i}\|) \right\}^{-1} \exp \left\{ -\frac{\|x_{i}\| - r_{\hat{\mathcal{Q}}_{q}}(x_{i}/\|x_{i}\|)}{\beta_{\mathcal{G}} f_{\mathcal{G}}(x_{i}/\|x_{i}\|)} \right\} \right].$$

• for W

$$\mathcal{L}_{\mathcal{W}}(f_W; r_{\hat{\mathcal{Q}}_q}, \underline{x}) = -\frac{1}{\#\mathcal{E}} \sum_{i \in \mathcal{E}} \log f_W(x_i / \|x_i\|).$$

Recall models M0 to M3:



- Model M0 is fitted by sequentially minimising the losses
 - for Q_q :

$$\mathcal{L}_{\mathcal{Q}_{q}}(\beta_{\mathcal{Q}_{q}}, f_{\mathcal{Q}_{q}}; \underline{x}) = \frac{1}{n} \sum_{i=1}^{n} \max \left\{ (1-q) \left[\|x_{i}\| - \beta_{\mathcal{Q}_{q}} f_{\mathcal{Q}_{q}} \left(\frac{x_{i}}{\|x_{i}\|} \right) \right], q \left[\|x_{i}\| - \beta_{\mathcal{Q}_{q}} f_{\mathcal{Q}_{q}} \left(\frac{x_{i}}{\|x_{i}\|} \right) \right] \right\}.$$

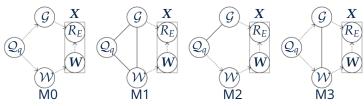
for G:

$$\mathcal{L}_{\mathcal{G}}(\beta_{\mathcal{G}}, f_{\mathcal{G}}; r_{\hat{\mathcal{Q}}_{q}}, \underline{x}) = -\frac{1}{\#\mathcal{E}} \sum_{i \in \mathcal{E}} \log \left[\left\{ \beta_{\mathcal{G}} f_{\mathcal{G}}(x_{i} / \|x_{i}\|) \right\}^{-1} \exp \left\{ -\frac{\|x_{i}\| - r_{\hat{\mathcal{Q}}_{q}}(x_{i} / \|x_{i}\|)}{\beta_{\mathcal{G}} f_{\mathcal{G}}(x_{i} / \|x_{i}\|)} \right\} \right].$$

o for W

$$\mathcal{L}_{\mathcal{W}}(f_{\mathbf{W}}; r_{\hat{\mathcal{Q}}_{q}}, \underline{x}) = -\frac{1}{\#\mathcal{E}} \sum_{i \in \mathcal{E}} \log f_{\mathbf{W}}(x_{i}/\|x_{i}\|)$$

Recall models M0 to M3:



- Model M0 is fitted by sequentially minimising the losses
 - for Q_q :

$$\mathcal{L}_{\mathcal{Q}_q}(\beta_{\mathcal{Q}_q}, f_{\mathcal{Q}_q}; \underline{x}) = \frac{1}{n} \sum_{i=1}^n \max \left\{ (1-q) \left[\|x_i\| - \beta_{\mathcal{Q}_q} f_{\mathcal{Q}_q} \left(\frac{x_i}{\|x_i\|} \right) \right], q \left[\|x_i\| - \beta_{\mathcal{Q}_q} f_{\mathcal{Q}_q} \left(\frac{x_i}{\|x_i\|} \right) \right] \right\}.$$

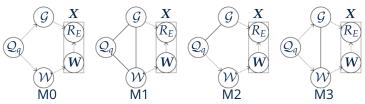
for G:

$$\mathcal{L}_{\mathcal{G}}(\beta_{\mathcal{G}}, f_{\mathcal{G}}; r_{\hat{\mathcal{Q}}_{q}}, \underline{x}) = -\frac{1}{\#\mathcal{E}} \sum_{i \in \mathcal{E}} \log \left[\left\{ \beta_{\mathcal{G}} f_{\mathcal{G}}(x_{i} / \| x_{i} \|) \right\}^{-1} \exp \left\{ -\frac{\|x_{i}\| - r_{\hat{\mathcal{Q}}_{q}}(x_{i} / \| x_{i} \|)}{\beta_{\mathcal{G}} f_{\mathcal{G}}(x_{i} / \| x_{i} \|)} \right\} \right].$$

for W:

$$\mathcal{L}_{\mathcal{W}}(f_{\mathbf{W}}; r_{\hat{\mathcal{Q}}_{q}}, \underline{x}) = -\frac{1}{\#\mathcal{E}} \sum_{i \in \mathcal{E}} \log f_{\mathbf{W}}(x_{i}/\|x_{i}\|).$$

Recall models M0 to M3:

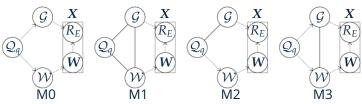


• Model M1 is fitted by sequentially minimising the loss $\mathcal{L}_{\mathcal{Q}_q,\mathcal{G},\mathcal{W}}(\beta_{\mathcal{Q}_q},\beta_{\mathcal{G}},f_W;\underline{x}) =$

$$= \mathcal{L}_{\mathcal{Q}_q}(\beta_{\mathcal{Q}_q}, f_{\mathbf{W}}^{1/d}; \underline{x}) + \lambda \left[\mathcal{L}_{\mathcal{G}}(\beta_{\mathcal{G}}, f_{\mathbf{W}}^{1/d}; \beta_{\mathcal{Q}_q} f_{\mathbf{W}}^{1/d}, \underline{x}) + \mathcal{L}_{\mathcal{W}}(f_{\mathbf{W}}; \beta_{\mathcal{Q}_q} f_{\mathbf{W}}^{1/d}, \underline{x}) \right].$$

- ullet The model is wholly defined in terms of only one density f_W and two scalars $eta_{\mathcal{Q}_q}$ and $eta_{\mathcal{G}}$
- λ is a weighting hyperparameter accounting for the different scales of the values of the losses.
- Comments on M2 and M3

Recall models M0 to M3:

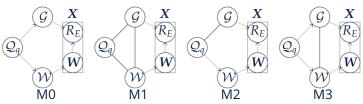


• Model M1 is fitted by sequentially minimising the loss $\mathcal{L}_{\mathcal{Q}_q,\mathcal{G},\mathcal{W}}(\beta_{\mathcal{Q}_q},\beta_{\mathcal{G}},f_{W}\,;\,\underline{x})=$

$$= \frac{\mathcal{L}_{\mathcal{Q}_q}}{(\beta_{\mathcal{Q}_q}, f_{W}^{1/d}; \underline{x})} + \lambda \big[\frac{\mathcal{L}_{\mathcal{G}}}{(\beta_{\mathcal{G}}, f_{W}^{1/d}; \beta_{\mathcal{Q}_q} f_{W}^{1/d}, \underline{x})} + \frac{\mathcal{L}_{\mathcal{W}}}{(f_W; \beta_{\mathcal{Q}_q} f_{W}^{1/d}, \underline{x})} \big].$$

- ullet The model is wholly defined in terms of only one density $f_{\mathbf{W}}$ and two scalars $eta_{\mathcal{Q}_q}$ and $eta_{\mathcal{G}}$
- λ is a weighting hyperparameter accounting for the different scales of the values of the losses.
- Comments on M2 and M3

Recall models M0 to M3:

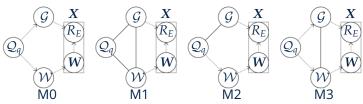


• Model M1 is fitted by sequentially minimising the loss $\mathcal{L}_{\mathcal{Q}_q,\mathcal{G},\mathcal{W}}(\beta_{\mathcal{Q}_q},\beta_{\mathcal{G}},f_W;\underline{x}) =$

$$= \frac{\mathcal{L}_{\mathcal{Q}_{q}}(\beta_{\mathcal{Q}_{q}}, f_{\mathbf{W}}^{1/d}; \underline{\mathbf{x}}) + \lambda \big[\underline{\mathcal{L}_{\mathcal{G}}}(\beta_{\mathcal{G}}, f_{\mathbf{W}}^{1/d}; \beta_{\mathcal{Q}_{q}} f_{\mathbf{W}}^{1/d}, \underline{\mathbf{x}}) + \underline{\mathcal{L}_{\mathcal{W}}}(f_{\mathbf{W}}; \beta_{\mathcal{Q}_{q}} f_{\mathbf{W}}^{1/d}, \underline{\mathbf{x}}) \big].$$

- ullet The model is wholly defined in terms of only one density f_W and two scalars $eta_{\mathcal{Q}_q}$ and $eta_{\mathcal{G}}$.
- $oldsymbol{\lambda}$ is a weighting hyperparameter accounting for the different scales of the values of the losses.
- Comments on M2 and M3.

Recall models M0 to M3:

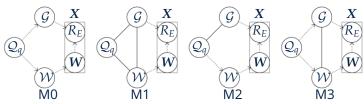


• Model M1 is fitted by sequentially minimising the loss $\mathcal{L}_{\mathcal{Q}_q,\mathcal{G},\mathcal{W}}(\beta_{\mathcal{Q}_q},\beta_{\mathcal{G}},f_W;\underline{x}) =$

$$= \frac{\mathcal{L}_{\mathcal{Q}_{q}}(\beta_{\mathcal{Q}_{q}}, f_{\mathbf{W}}^{1/d}; \underline{\mathbf{x}}) + \lambda \big[\underline{\mathcal{L}_{\mathcal{G}}}(\beta_{\mathcal{G}}, f_{\mathbf{W}}^{1/d}; \beta_{\mathcal{Q}_{q}} f_{\mathbf{W}}^{1/d}, \underline{\mathbf{x}}) + \underline{\mathcal{L}_{\mathcal{W}}}(f_{\mathbf{W}}; \beta_{\mathcal{Q}_{q}} f_{\mathbf{W}}^{1/d}, \underline{\mathbf{x}}) \big].$$

- The model is wholly defined in terms of only one density f_W and two scalars $\beta_{\mathcal{Q}_q}$ and $\beta_{\mathcal{G}}$.
- Comments on M2 and M3.

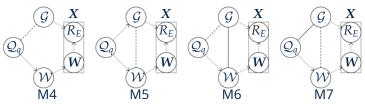
Recall models M0 to M3:



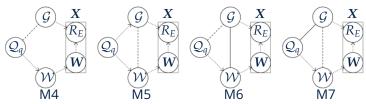
• Model M1 is fitted by sequentially minimising the loss $\mathcal{L}_{\mathcal{Q}_q,\mathcal{G},\mathcal{W}}(\beta_{\mathcal{Q}_q},\beta_{\mathcal{G}},f_{\mathbf{W}}\,;\,\underline{\mathbf{x}}) =$

$$= \frac{\mathcal{L}_{\mathcal{Q}_{q}}(\beta_{\mathcal{Q}_{q}}, f_{\mathbf{W}}^{1/d}; \underline{\mathbf{x}}) + \lambda \big[\underline{\mathcal{L}_{\mathcal{G}}}(\beta_{\mathcal{G}}, f_{\mathbf{W}}^{1/d}; \beta_{\mathcal{Q}_{q}} f_{\mathbf{W}}^{1/d}, \underline{\mathbf{x}}) + \underline{\mathcal{L}_{\mathcal{W}}}(f_{\mathbf{W}}; \beta_{\mathcal{Q}_{q}} f_{\mathbf{W}}^{1/d}, \underline{\mathbf{x}}) \big].$$

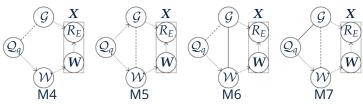
- ullet The model is wholly defined in terms of only one density f_W and two scalars $eta_{\mathcal{Q}_q}$ and $eta_{\mathcal{G}}$.
- Comments on M2 and M3.



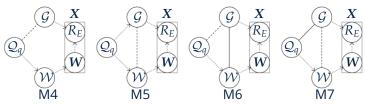
- Model M4 to M7 require the same losses as their equivalent models with dashed edges replaced by solid edges.
- They require an additional NF $h_{\mathcal{D}}$ associated with the deforming shape $f_{\mathcal{D}}$ to be learned from data.
- We impose a penalisation on $f_{\mathcal{D}}$ to constrain it from deviating too much from the uniform density on \mathbb{S}^{d-1} .



- Model M4 to M7 require the same losses as their equivalent models with dashed edges replaced by solid edges.
- They require an additional NF $h_{\mathcal{D}}$ associated with the deforming shape $f_{\mathcal{D}}$ to be learned from data.
- We impose a penalisation on $f_{\mathcal{D}}$ to constrain it from deviating too much from the uniform density on \mathbb{S}^{d-1} .



- Model M4 to M7 require the same losses as their equivalent models with dashed edges replaced by solid edges.
- They require an additional NF $h_{\mathcal{D}}$ associated with the deforming shape $f_{\mathcal{D}}$ to be learned from data.
- We impose a penalisation on f_D to constrain it from deviating too much from the uniform density on \mathbb{S}^{d-1} .



- Model M4 to M7 require the same losses as their equivalent models with dashed edges replaced by solid edges.
- They require an additional NF $h_{\mathcal{D}}$ associated with the deforming shape $f_{\mathcal{D}}$ to be learned from data.
- We impose a penalisation on $f_{\mathcal{D}}$ to constrain it from deviating too much from the uniform density on \mathbb{S}^{d-1} .

ullet To devise the uniform density on \mathbb{S}^{d-1} , we consider $A_{d-1}(r)$ the hypervolume (or surface area) of the (d-1)-sphere of radius r given by

$$A_{d-1}(r) = \frac{2\pi^{d/2}}{\Gamma(d/2)} r^{d-1}, \quad r \in (0, \infty),$$

where Γ denotes the gamma function.

• It follows that a PDF with uniform density on \mathbb{S}^{d-1} is given by

$$f_U(w) = 1/A_{d-1}(1)$$

for all $w \in \mathbb{S}^{d-1}$.

- Penalisation of $f_{\mathcal{D}}$ away from $f_{\mathcal{U}}$ can then be performed via the Kullback–Leibler divergence $\mathrm{D}_{\mathrm{KL}}[f_{\mathcal{U}}||f_{\mathcal{D}}] = \int_{\mathbb{S}^{d-1}} \log[f_{\mathcal{U}}(w)/f_{\mathcal{D}}(w)]f_{\mathcal{U}}(w)\,dw.$
- In practice, this integral is approximated via Monte Carlo integration by sampling a large number m of directions u_1, \ldots, u_m uniformly on \mathbb{S}^{d-1} and calculating

$$\overline{\mathbf{D}}_{\mathrm{KL}}[f_{U}||f_{\mathcal{D}}] := \frac{1}{m} \sum_{i=1}^{m} \log[f_{U}(u_{i})/f_{\mathcal{D}}(u_{i})] = -\log[A_{d-1}(1)] - \frac{1}{m} \sum_{i=1}^{m} \log[f_{\mathcal{D}}(u_{i})], \quad (5)$$

with $\overline{D}_{KI}[f_{IJ}||f_{\mathcal{D}}] \stackrel{\mathbb{P}}{\longrightarrow} D_{KI}[f_{IJ}||f_{\mathcal{D}}]$ as $m \to \infty$.

ullet To devise the uniform density on \mathbb{S}^{d-1} , we consider $A_{d-1}(r)$ the hypervolume (or surface area) of the (d-1)-sphere of radius r given by

$$A_{d-1}(r) = \frac{2\pi^{d/2}}{\Gamma(d/2)} r^{d-1}, \quad r \in (0, \infty),$$

where Γ denotes the gamma function.

ullet It follows that a PDF with uniform density on \mathbb{S}^{d-1} is given by

$$f_U(w) = 1/A_{d-1}(1)$$

for all $w \in \mathbb{S}^{d-1}$.

- Penalisation of $f_{\mathcal{D}}$ away from $f_{\mathcal{U}}$ can then be performed via the Kullback–Leibler divergence $\mathrm{D}_{\mathrm{KL}}[f_{\mathcal{U}}\|f_{\mathcal{D}}] = \int_{\mathbb{S}^{d-1}} \log[f_{\mathcal{U}}(w)/f_{\mathcal{D}}(w)]f_{\mathcal{U}}(w)\,dw.$
- In practice, this integral is approximated via Monte Carlo integration by sampling a large number m of directions u_1, \ldots, u_m uniformly on \mathbb{S}^{d-1} and calculating

$$\overline{D}_{KL}[f_{U}||f_{\mathcal{D}}] := \frac{1}{m} \sum_{i=1}^{m} \log[f_{U}(u_{i})/f_{\mathcal{D}}(u_{i})] = -\log[A_{d-1}(1)] - \frac{1}{m} \sum_{i=1}^{m} \log[f_{\mathcal{D}}(u_{i})], \quad (5)$$

with $\overline{\mathbb{D}}_{\mathrm{KL}}[f_U\|f_{\mathcal{D}}] \stackrel{\mathbb{P}}{\longrightarrow} \mathbb{D}_{\mathrm{KL}}[f_U\|f_{\mathcal{D}}]$ as $m \to \infty$.

ullet To devise the uniform density on \mathbb{S}^{d-1} , we consider $A_{d-1}(r)$ the hypervolume (or surface area) of the (d-1)-sphere of radius r given by

$$A_{d-1}(r) = \frac{2\pi^{d/2}}{\Gamma(d/2)} r^{d-1}, \quad r \in (0, \infty),$$

where Γ denotes the gamma function.

ullet It follows that a PDF with uniform density on \mathbb{S}^{d-1} is given by

$$f_U(w) = 1/A_{d-1}(1)$$

for all $w \in \mathbb{S}^{d-1}$.

- Penalisation of $f_{\mathcal{D}}$ away from f_U can then be performed via the Kullback–Leibler divergence $D_{KL}[f_U||f_{\mathcal{D}}] = \int_{\mathbb{S}^{d-1}} \log[f_U(w)/f_{\mathcal{D}}(w)]f_U(w) dw$.
- In practice, this integral is approximated via Monte Carlo integration by sampling a large number m of directions u_1, \ldots, u_m uniformly on \mathbb{S}^{d-1} and calculating

$$\overline{D}_{KL}[f_{U}||f_{\mathcal{D}}] := \frac{1}{m} \sum_{i=1}^{m} \log[f_{U}(u_{i})/f_{\mathcal{D}}(u_{i})] = -\log[A_{d-1}(1)] - \frac{1}{m} \sum_{i=1}^{m} \log[f_{\mathcal{D}}(u_{i})], \quad (5)$$

with $\overline{\mathbb{D}}_{\mathrm{KL}}[f_U \| f_{\mathcal{D}}] \stackrel{\mathbb{P}}{\longrightarrow} \mathbb{D}_{\mathrm{KL}}[f_U \| f_{\mathcal{D}}]$ as $m \to \infty$.

ullet To devise the uniform density on \mathbb{S}^{d-1} , we consider $A_{d-1}(r)$ the hypervolume (or surface area) of the (d-1)-sphere of radius r given by

$$A_{d-1}(r) = \frac{2\pi^{d/2}}{\Gamma(d/2)} r^{d-1}, \quad r \in (0, \infty),$$

where Γ denotes the gamma function.

ullet It follows that a PDF with uniform density on \mathbb{S}^{d-1} is given by

$$f_U(w) = 1/A_{d-1}(1)$$

for all $w \in \mathbb{S}^{d-1}$.

- Penalisation of $f_{\mathcal{D}}$ away from $f_{\mathcal{U}}$ can then be performed via the Kullback–Leibler divergence $\mathrm{D}_{\mathrm{KL}}[f_{\mathcal{U}}||f_{\mathcal{D}}] = \int_{\mathbb{S}^{d-1}} \log[f_{\mathcal{U}}(w)/f_{\mathcal{D}}(w)]f_{\mathcal{U}}(w)\,dw.$
- In practice, this integral is approximated via Monte Carlo integration by sampling a large number m of directions u_1, \ldots, u_m uniformly on \mathbb{S}^{d-1} and calculating

$$\overline{D}_{KL}[f_{U}||f_{\mathcal{D}}] := \frac{1}{m} \sum_{i=1}^{m} \log[f_{U}(u_{i})/f_{\mathcal{D}}(u_{i})] = -\log[A_{d-1}(1)] - \frac{1}{m} \sum_{i=1}^{m} \log[f_{\mathcal{D}}(u_{i})], \quad (5)$$

with $\overline{\mathrm{D}}_{\mathrm{KL}}[f_U || f_{\mathcal{D}}] \stackrel{\mathbb{P}}{\longrightarrow} \mathrm{D}_{\mathrm{KL}}[f_U || f_{\mathcal{D}}]$ as $m \to \infty$.

Model assessment

• Under assumptions of uniform convergence on \mathbb{S}^{d-1} ,

$$F_{R|W}\left(\frac{R-r_{\mathcal{Q}_q^{\;\star}}(W)}{r_{\mathcal{G}^{\;\star}}(W)}\right)^{1/d}W\Big|\left\{R>r_{\mathcal{Q}_q^{\;\star}}(W)\right\}\overset{d}{\longrightarrow} \textit{$U_{B_1(\mathbf{0})}$},\quad\text{ as }q\rightarrow 1,$$

where $r_{\mathcal{Q}_q^*}$ and $r_{\mathcal{G}^*}$ are deterministic functions of $r_{\mathcal{Q}_q}$, $r_{\mathcal{G}}$, and $f_{\mathbf{W}}$.

We consider the stationary random point measure

$$P^* := \sum_{i=1}^{n} \delta \left[H_{W_i} \left(\frac{R_i - r_{Q_q^*}(W_i)}{r_{\mathcal{G}^*}(W_i)} \right)^{1/d} W_i \right] \mathbb{1}_{R_i > r_{Q_q^*}(W_i)}.$$

• We use an adapted version of the standard K-functions to assess if P^* is statistically distinguishable from a random point measure with constant intensity on $B_1(0)$.

• Under assumptions of uniform convergence on \mathbb{S}^{d-1} ,

$$F_{R|W}\left(\frac{R-r_{\mathcal{Q}_q^{\;\star}}(W)}{r_{\mathcal{G}^{\star}}(W)}\right)^{1/d}W\Big|\left\{R>r_{\mathcal{Q}_q^{\;\star}}(W)\right\}\overset{d}{\longrightarrow} \textit{$U_{B_1(\mathbf{0})}$},\quad\text{ as $q\to 1$,}$$

where $r_{\mathcal{Q}_q^*}$ and $r_{\mathcal{G}^*}$ are deterministic functions of $r_{\mathcal{Q}_q}$, $r_{\mathcal{G}}$, and $f_{\mathbf{W}}$.

We consider the stationary random point measure

$$P^* := \sum_{i=1}^n \delta \left[H_{W_i} \left(\frac{R_i - r_{\mathcal{Q}_q^*}(W_i)}{r_{\mathcal{G}^*}(W_i)} \right)^{1/d} W_i \right] \mathbb{1}_{R_i > r_{\mathcal{Q}_q^*}(W_i)}.$$

• We use an adapted version of the standard K-functions to assess if P^* is statistically distinguishable from a random point measure with constant intensity on $B_1(0)$.

• Under assumptions of uniform convergence on \mathbb{S}^{d-1} ,

$$F_{R|W}\left(\frac{R-r_{\mathcal{Q}_q^{\;\star}}(W)}{r_{\mathcal{G}^{\;\star}}(W)}\right)^{1/d}W\Big|\left\{R>r_{\mathcal{Q}_q^{\;\star}}(W)\right\}\overset{d}{\longrightarrow} \textit{$U_{B_1(\mathbf{0})}$},\quad\text{ as }q\rightarrow 1,$$

where $r_{\mathcal{Q}_{q^*}}$ and $r_{\mathcal{G}^*}$ are deterministic functions of $r_{\mathcal{Q}_{q}}$, $r_{\mathcal{G}}$, and $f_{\mathbf{W}}$.

We consider the stationary random point measure

$$P^* := \sum_{i=1}^n \delta \left[H_{W_i} \left(\frac{R_i - r_{\mathcal{Q}_q^*}(W_i)}{r_{\mathcal{G}^*}(W_i)} \right)^{1/d} W_i \right] \mathbb{1}_{R_i > r_{\mathcal{Q}_q^*}(W_i)}.$$

• We use an adapted version of the standard K-functions to assess if P^* is statistically distinguishable from a random point measure with constant intensity on $B_1(\mathbf{0})$.

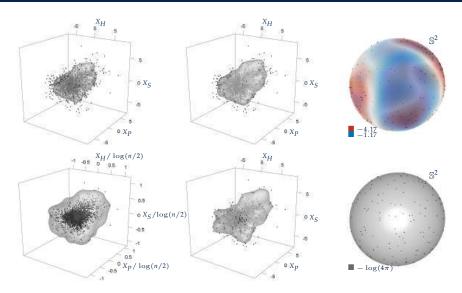


Figure from Papastathopoulos et al. (2023)

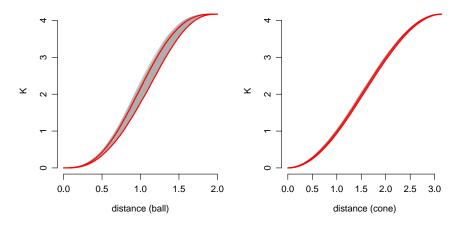


Figure from Papastathopoulos et al. (2023)