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Limit sets

Let X1,X2, . . . ∈ Rd be iid draws from PX with standard Laplace marginal distributions, and
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Limit sets
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Very broad overview – A directional statistics approach

Let X1,X2, . . . ∈ Rd be iid draws from PX with standard Laplace marginal distributions, and

R := ∥X∥2 > 0, W := X/R ∈ Sd−1.

X1

X2

X3
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Starshaped sets ⋆ – A basis for our model construction

A set B ∈ Rd is starshaped if there exists a set ker(B) ⊆ B such that for x ∈ ker(B) and for
all y ∈ B, the segment [x : y] ∈ B.

A set B ∈ ⋆ is in one-to-one correspondence with a radial function

rB(w) = sup{λ ∈ R : λw ∈ B}, w ∈ Sd−1.

Starshaped sets admit algebraic operations via their radial functions:

1

1

1

1

1

1

1Hansen et al. (2020)
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Geometric multivariate EVT: Motivation

Interest in gaining more insight into the (extremal) dependence structure of a random
vector X = (X1, . . . ,Xd) ∈ Rd.

Extrapolating beyond the range of observed data:
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Directions along which MEVT frameworks allow extrapolation to tail regions: (a) MRV, (b) and (c)
conditional extremes, (d) geometric extremes.

Effectively, we want to study the random variable

(R,W)
∣∣ {R /∈ Qq}.
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The quantile set Qq

We letQq via the q-th quantile of R |W = w, that is, it satisfies

P[R ≤ rQq (w) | W = w] = q, for all w ∈ Sd−1.

Qq then satisfies that

P[X /∈ Qq] = 1− q, and W | {X /∈ Qq}
d
= W.

Qq

Q′
q

0

0.1

0.2

0

0.1

0.2

0.3

Left: Independent samples (n = 2 × 104) from a bivariate distribution having true quantile set Q0.95,
boundary ∂Q0.95 (solid black line) and complement Q′

0.95. Centre: Empirical proportion of
exceedances binned by angular regions with true exceedance probability (0.05) in red. Right: Circular
histogram of the density of all sampled angles (light grey) and of exceedance angles (dark grey) with
concentric circles denoting density level sets.
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Exceedances of Qq

Note that the event {X = RW /∈ Qq} corresponds to {R > rQq (W)}.

Further, Papastathopoulos et al. (2023) show conditions under which there exist a
starshaped set G such that(

R− rQq (W)

rG(W)
,W

) ∣∣ {R > rQq (W)} d−→ (Z,V), as q→ 1, (1)

where Z ∼ Exp(1), V ∼ PW .
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PROPOSED MODELS
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Links between parameters and models

Under appropriate convergence conditions1, it can be shown that the quantile set Qq is
asymptotically (q→ 1) a scale multiple of the scaling/limit set G, that is,

Qq ≈ αqG, αq > 0, as q→ 1

1Wadsworth & Campbell (2024)
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Links between parameters and models

If the density of X is homothetic with respect to r−1
G , that is,

fX(x) = f0(r−1
G (x)), x ∈ Rd,

then G andW can be linked1 through

rW (w) = fW(w) =
rG(w)d

d|G|
, w ∈ Sd−1.

1Papastathopoulos et al. (2023)
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Proposed models

Any positive function rB defined on Sd−1 can be written as

rB(w) = βBfB(w), w ∈ Sd−1,

for a constant βB =
∫
Sd−1 rB(w)dw and density fB integrating to 1 on Sd−1.

Using the links G–Qq and G–W , we can formulate a statistical model

rQq (w) = βQq fW(w)d and rG(w) = βG fW(w)d, w ∈ Sd−1.
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Proposed models

We introduce a deformation set D with radial function fD : Sd−1 → [0,∞).

We can then weaken the equality assumptions of models M1, M2, and M3 via

rQq (w) = βqfD(w)fG(w), w ∈ Sd−1,

and
rG(w) = βG{fD(w)fW(w)}1/d, w ∈ Sd−1,

Lambert De Monte (UoE) Generative AI Modelling for Extreme Events 13th June 2025 12 / 24
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Models M4 to M7 are identifiable as is, but we impose penalisation on D.
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STATISTICAL INFERENCE
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Normalising flows1 and density estimation2

A normalising flow (NF) learns a transformation mapping a random variable Y ∈ Y with
unknown distribution to that of a known, base variable Z ∈ Z .

f Z f Y

Z Y

Figure 1 of Kobyzev et al. (2021)

1Tabak & Vanden-Eijnden (2010), 2Dinh et al. (2015)
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Normalising flows1 and density estimation2

A normalising flow (NF) learns a transformation mapping a random variable Y ∈ Y with
unknown distribution to that of a known, base variable Z ∈ Z .

f Z f Y

Z Y

Z = h−1(Y)

Y = h(Z)

Figure 1 of Kobyzev et al. (2021)

Assuming Y admits a density on Y , this problem can be phrased as aiming to infer a
(bijective and differentiable) transformation function h such that

fY(y) = fZ
{

h−1(y)
} ∣∣∣∣∂h−1(y)

∂y

∣∣∣∣ , y ∈ Y.

In practice, h is modelled as a composition of many simple bijective transformations
h1, . . . , hk, i.e. h = h1 ◦ h2 ◦ . . . ◦ hk.

1Tabak & Vanden-Eijnden (2010), 2Dinh et al. (2017)
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A map from the hypersphere to the hypercylinder

Transform the observations and models from Sd−1 to a cylindrical space Cd−1 (by abuse
of notation).

Cd−1 :=

Figure 6 of Rezende et al. (2020)
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A map from the hypersphere S2 to the hypercylinder C2

W1

W2

W3

T : S2\S3 → C2

w 7→ c =

 w1√
1−w2

3

,
w2√
1−w2

3

, w3


C1

C2

C3e(3)
3

−e(3)
3

S1 × {1}

S1 × {−1}

w1

w2

c1

c2
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A model for PDFs and positive functions on Sd−1

It follows from the map T that a target PDF fB : Sd−1\Sd → [0,∞), describing the shape
of a starshaped set B ∈ Rd a.e., can be written as

fB(w) = fY(T(w))|∂T(w)/∂w|, w ∈ Sd−1\Sd,

for a target PDF fY defined on Cd−1.

Using the NFs formulation, fB can in turn be modelled in terms of a known base PDF
fZ : Cd−1 → [0,∞) and a normalising flow hB as

fB(w) = fZ
{

h−1
B (T(w))

} ∣∣∣∣∣∂h−1
B (T(w))

∂T(w)

∣∣∣∣∣
∣∣∣∣∂T(w)

∂w

∣∣∣∣ , w ∈ Sd−1\Sd,

where |∂T(w)/w| is the Jacobian of the recursive transformation T.

Further, a model for any positive/radial function rB of a starshaped set B – such as the
quantile setQq or the scaling set G – can be obtained via

rB = βBfB

where fB is as above, and βB > 0 is a coefficient to be learned alongside the NF hB.

1Stimper et al. (2023)
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of a starshaped set B ∈ Rd a.e., can be written as

fB(w) = fY(T(w))|∂T(w)/∂w|, w ∈ Sd−1\Sd,

for a target PDF fY defined on Cd−1.

Using the NFs formulation, fB can in turn be modelled in terms of a known base PDF
fZ : Cd−1 → [0,∞) and a normalising flow hB as
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∂T(w)
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∣∣∣∣∂T(w)

∂w

∣∣∣∣ , w ∈ Sd−1\Sd,

where |∂T(w)/w| is the Jacobian of the recursive transformation T.

Further, a model for any positive/radial function rB of a starshaped set B – such as the
quantile setQq or the scaling set G – can be obtained via

rB = βBfB

where fB is as above, and βB > 0 is a coefficient to be learned alongside the NF hB.
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A GRADIENT DESCENT
APPROACH

A PyTorch1 implementation2 of NFs and composite loss minimisation via the Adam optimiser3

1Paszke et al. (2019), 2Stimper et al. (2023), 3Kingma & Ba (2017)
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PROBABILITY ESTIMATION
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Probability estimation

For any Borel set B ∈ Rd\Qq,

P[X ∈ B | X /∈ Qq] =

∫
Sd−1

∫
B∩]0:w)

1
rG(w)

exp

{
−

r− rQq (w)

rG(w)

}
fW(w)dr dw.

B

Qq
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Probability estimation

For any Borel set B ∈ Rd\Qq, we use the Monte Carlo integration

P[X ∈ B | X /∈ Qq]
P←

1
m

m∑
i=1

∫
B∩]0:wi)

1
rG(wi)

exp

{
−

r− rQq (wi)

rG(wi)

}
dr, n→∞.

where w1, . . . ,wm ∼ fW .

B

Qq

The integral is exact provided one knows all radial entry and exit points of B.

The collection w1, . . . ,wm ∼ fW is sampled fast using the generative direction of the NF.
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Simulation study results – 3 dimensions

CIL CIL CILlog P̂R1
log P̂R2

log P̂R3
CIU CIU CIU

M0 M1 M2 M0 M1 M2 M0 M1 M2

R1
=

[10,∞]3

R2

=

[−5, 5] × [10,∞] × [−10, 10]

R3

=

[−∞, 5] × [5,∞] × [−5, 5]

Boxplots of 100 estimated log-probabilities and associated lower- and upper-bounds of 95% bootstrap
confidence intervals for the sets R1,R2,R3 ∈ R3. (n = 104).
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Simulation study results – 5 dimensions

CIL CIL CILlog P̂R1
log P̂R2

log P̂R3
CIU CIU CIU

M0 M1 M2 M0 M1 M2 M0 M1 M2

R1
=

[10,∞]5

R2

=

[−∞,∞]× [6,∞]× [8,∞]× [6,∞]× [−∞,∞]

R3

=

[−∞,−7]× [−∞, 0]× [−∞,−5]× [−∞, 0]× [−∞,−7]

Boxplots of 100 estimated log-probabilities and associated lower- and upper-bounds of 95% bootstrap
confidence intervals for the sets R1,R2,R3 ∈ R5. (n = 104).
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Simulation study results – 7 dimensions

CIL CIL CILlog P̂R1
log P̂R2

log P̂R3
CIU CIU CIU

M0 M1 M2 M0 M1 M2 M0 M1 M2

R1
=

[10,∞]7

R2

=

[0,∞] × [0,∞] × [5,∞] × [5,∞]
×[0,∞] × [8,∞] × [8,∞]

R3

=

[6,∞] × [−2,∞] × [−∞, 5] × [6,∞]
×[−2,∞] × [−∞, 5] × [6,∞]

Boxplots of 100 estimated log-probabilities and associated lower- and upper-bounds of 95% bootstrap
confidence intervals for the sets R1,R2,R3 ∈ R7. (n = 104).

Lambert De Monte (UoE) Generative AI Modelling for Extreme Events 13th June 2025 19 / 24



Simulation study results – 10 dimensions

CIL CIL CILlog P̂R1
log P̂R2

log P̂R3
CIU CIU CIU

R1
=

[10,∞]10

R2

=

[−∞,∞]× [−∞,∞]× [8,∞]× [8,∞]× [−∞,∞]
×[8,∞]× [−∞,∞]× [8,∞]× [8,∞]× [8,∞]

R3

=

[−∞,−6]× [−∞,−6]× [−∞,∞]× [−∞,∞]× [−∞,−6]
×[−∞,∞]× [−∞,−6]× [∞,−6]× [−∞,∞]× [−∞,∞]

Boxplots of 100 estimated log-probabilities and associated lower- and upper-bounds of 95% bootstrap
confidence intervals for the sets R1,R2,R3 ∈ R10. (n = 5 × 104, 105, 2 × 105).
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LOW AND HIGH WIND
SPEEDS

In relation to electricity production in the
Pacific Northwest, United States
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Pacific Northwest region of the United States
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Wind turbine power curves
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Scale-shape homogenisation

Define the windspeed
Xo

j,m,h

at station j in month m of the year and hour h.
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Scale-shape homogenisation

Define the windspeed
Xo

j,m,h

at station j in month m of the year and hour h.

We assume1

Xo
j,m,h ∼ Weibull

(
λj,m,h = sj,1(m) + sj,2(h) , κj,m,h = sj,3(m) + sj,4(h)

)
, (3)

where s denotes a cubic cyclic spline on m ∈ {1, . . . , 12} or h ∈ {0, . . . , 23}.

1Elliott et al. (2004)
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Scale-shape homogenisation

Define the windspeed
Xo

j,m,h

at station j in month m of the year and hour h.

We assume1

Xo
j,m,h ∼ Weibull

(
λj,m,h = sj,1(m) + sj,2(h) , κj,m,h = sj,3(m) + sj,4(h)

)
, (4)

where s denotes a cubic cyclic spline on m ∈ {1, . . . , 12} or h ∈ {0, . . . , 23}.

We fit the model using evgam2 and apply XH
j,m,h := (Xo

j,m,h/λ̂j,m,h)
κ̂j,m,h

month month hour hour

xo
1 xH

1 xo
1 xH

1

1Elliott et al. (2004), 2Youngman (2022)
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Analysis of station configurations – January at 18:00

(a) Minimises probability of no production
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Analysis of station configurations – January at 18:00

(a) Minimises probability of no production (b) Maximises probability of no production
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Analysis of station configurations – January at 18:00

(a) Minimises probability of no production (b) Maximises probability of no production

(c) Maximises probability of full production
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Analysis of seasonality of power production – configuration (a)

m =
h =

m =
h =

P̂ X
J(

E(1
,I

)
m
,h

)

P̂ X
J(

E(2
,I

)
m
,h

)

Month m, Hour h Month m, Hour h

Configuration (a): Minimises probability of no production
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Proposed models

We introduce a deformation set D with radial function fD : Sd−1 → [0,∞).

We can then weaken the equality assumptions of models M1, M2, and M3 via

rQq (w) = βqfD(w)fG(w), w ∈ Sd−1,

and
rG(w) = βG{fD(w)fW(w)}1/d, w ∈ Sd−1,

X X X X
RE RE RE RE

W W W W
Qq Qq Qq Qq

G G G G

W W W W
M4 M5 M6 M7

Models M4 to M7 are identifiable as is, but I discuss this further in the next section if
there are no questions!

Lambert De Monte (UoE) Generative AI Modelling for Extreme Events 13th June 2025 25 / 24



Proposed models

We introduce a deformation set D with radial function fD : Sd−1 → [0,∞).

We can then weaken the equality assumptions of models M1, M2, and M3 via

rQq (w) = βqfD(w)fG(w), w ∈ Sd−1,

and
rG(w) = βG{fD(w)fW(w)}1/d, w ∈ Sd−1,

X X X X
RE RE RE RE

W W W W
Qq Qq Qq Qq

G G G G

W W W W
M4 M5 M6 M7

Models M4 to M7 are identifiable as is, but I discuss this further in the next section if
there are no questions!

Lambert De Monte (UoE) Generative AI Modelling for Extreme Events 13th June 2025 25 / 24



Proposed models

We introduce a deformation set D with radial function fD : Sd−1 → [0,∞).

We can then weaken the equality assumptions of models M1, M2, and M3 via

rQq (w) = βqfD(w)fG(w), w ∈ Sd−1,

and
rG(w) = βG{fD(w)fW(w)}1/d, w ∈ Sd−1,

X X X X
RE RE RE RE

W W W W
Qq Qq Qq Qq

G G G G

W W W W
M4 M5 M6 M7

Models M4 to M7 are identifiable as is, but I discuss this further in the next section if
there are no questions!

Lambert De Monte (UoE) Generative AI Modelling for Extreme Events 13th June 2025 25 / 24



Model fitting via loss minimisation

Recall models M0 to M3:
X X X X
RE RE RE RE

W W W W
Qq Qq Qq Qq

G G G G

W W W W
M0 M1 M2 M3

Model M0 is fitted by sequentially minimising the losses
for Qq:

LQq (βQq , fQq ; x) =
1
n

n∑
i=1

max

{
(1 − q)

[
∥xi∥ − βQq fQq

(
xi

∥xi∥

)]
, q

[
∥xi∥ − βQq fQq

(
xi

∥xi∥

)]}
.

for G:

LG(βG , fG ; rQ̂q
, x) = −

1
#E

∑
i∈E

log

[
{βG fG(xi/∥xi∥)}−1

exp

{
−

∥xi∥ − rQ̂q
(xi/∥xi∥)

βG fG(xi/∥xi∥)

}]
.

for W :

LW(fW ; rQ̂q
, x) = −

1
#E

∑
i∈E

log fW(xi/∥xi∥).
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Model fitting via loss minimisation

Recall models M0 to M3:
X X X X
RE RE RE RE

W W W W
Qq Qq Qq Qq

G G G G

W W W W
M0 M1 M2 M3

Model M1 is fitted by sequentially minimising the loss LQq,G,W (βQq , βG , fW ; x) =

= LQq (βQq , f 1/d
W ; x) + λ

[
LG(βG , f 1/d

W ; βQq f 1/d
W , x) + LW (fW ; βQq f 1/d

W , x)
]
.

The model is wholly defined in terms of only one density fW and two scalars βQq and βG .

λ is a weighting hyperparameter accounting for the different scales of the values of the
losses.

Comments on M2 and M3.
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Model fitting via loss minimisation

Recall models M4 to M7:
X X X X
RE RE RE RE

W W W W
Qq Qq Qq Qq

G G G G

W W W W
M4 M5 M6 M7

Model M4 to M7 require the same losses as their equivalent models with dashed edges
replaced by solid edges.

They require an additional NF hD – associated with the deforming shape fD – to be
learned from data.

We impose a penalisation on fD to constrain it from deviating too much from the
uniform density on Sd−1.
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Uniform-on-Sd−1 penalisation

To devise the uniform density on Sd−1, we consider Ad−1(r) the hypervolume (or surface
area) of the (d− 1)-sphere of radius r given by

Ad−1(r) =
2πd/2

Γ(d/2)
rd−1, r ∈ (0,∞),

where Γ denotes the gamma function.

It follows that a PDF with uniform density on Sd−1 is given by

fU(w) = 1/Ad−1(1)

for all w ∈ Sd−1.

Penalisation of fD away from fU can then be performed via the Kullback–Leibler
divergence DKL[fU∥fD] =

∫
Sd−1 log[fU(w)/fD(w)]fU(w) dw.

In practice, this integral is approximated via Monte Carlo integration by sampling a large
number m of directions u1, . . . , um uniformly on Sd−1 and calculating

DKL[fU∥fD] :=
1
m

m∑
i=1

log[fU(ui)/fD(ui)] = − log[Ad−1(1)]−
1
m

m∑
i=1

log[fD(ui)], (5)

with DKL[fU∥fD]
P−→ DKL[fU∥fD] as m→∞.
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Model assessment

Lambert De Monte (UoE) Generative AI Modelling for Extreme Events 13th June 2025 30 / 24



Model assessment – A random point measure approach

Under assumptions of uniform convergence on Sd−1,

FR|W

(
R− rQq⋆ (W)

rG⋆ (W)

)1/d

W
∣∣∣ {R > rQq⋆ (W)

}
d−→ UB1(0), as q→ 1,

where rQq⋆ and rG⋆ are deterministic functions of rQq , rG , and fW .

We consider the stationary random point measure

P⋆ :=
n∑

i=1

δ

HWi

(
Ri − rQq⋆ (Wi)

rG⋆ (Wi)

)1/d

Wi

1Ri>rQq⋆ (Wi)
.

We use an adapted version of the standard K-functions to assess if P⋆ is statistically
distinguishable from a random point measure with constant intensity on B1(0).
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Model assessment – A random point measure approach
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Figure from Papastathopoulos et al. (2023)

Lambert De Monte (UoE) Generative AI Modelling for Extreme Events 13th June 2025 31 / 24



Model assessment – A random point measure approach
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