ExcessGAN: simulation above extreme thresholds using Generative Adversarial Networks

Michaël Allouche Stéphane Girard Emmanuel Gobet

Generative AI Modelling for Extreme Events
The University of Edinburgh

June 13-14, 2025

Motivations

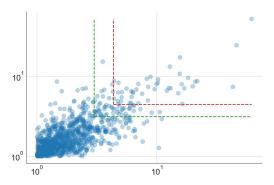


Figure: Simulated observations from a bivariate Gumbel copula with two Burr margins. Two extreme regions are represented by green and red dashed lines.

How to sample from the distribution of the excess?

- Stochastic models: high computational complexity
- Data based models: few observations by nature

Ingredients: Generative Modeling, Neural Networks, Extreme Value Theory

Generative modeling

Objective. Given observations $\{X_1, \ldots, X_n\}$ assumed to be indep. sampled from an unknown distribution p_X on $\mathcal{X} \subseteq \mathbb{R}^D$, find a generator $G: \mathcal{Z} \to \mathcal{X}$ and a latent distribution p_Z defined on $\mathcal{Z} \subseteq \mathbb{R}^q$, s.t.

$$G(\mathbf{Z}) \stackrel{\mathrm{d}}{=} \mathbf{X}, \quad \mathbf{Z} \sim p_{\mathbf{Z}}.$$

Generative modeling

Objective. Given observations $\{X_1, \ldots, X_n\}$ assumed to be indep. sampled from an unknown distribution p_X on $\mathcal{X} \subseteq \mathbb{R}^D$, find a generator $G: \mathcal{Z} \to \mathcal{X}$ and a latent distribution p_Z defined on $\mathcal{Z} \subseteq \mathbb{R}^q$, s.t.

$$G(\mathbf{Z}) \stackrel{\mathrm{d}}{=} \mathbf{X}, \quad \mathbf{Z} \sim p_{\mathbf{Z}}.$$

Which p_Z ? Which q? How to approximate G?

Generative modeling

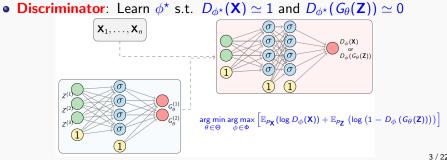
Objective. Given observations $\{X_1, \dots, X_n\}$ assumed to be indep. sampled from an unknown distribution $p_{\mathbf{X}}$ on $\mathcal{X} \subseteq \mathbb{R}^{D}$, find a generator $G: \mathcal{Z} \to \mathcal{X}$ and a latent distribution $p_{\mathbf{Z}}$ defined on $\mathcal{Z} \subseteq \mathbb{R}^q$, s.t.

$$G(\mathbf{Z}) \stackrel{\mathrm{d}}{=} \mathbf{X}, \quad \mathbf{Z} \sim p_{\mathbf{Z}}.$$

Which p_Z ? Which q? How to approximate G?

GANs. [Goodfellow et al., 2014]

- Generator: Learn θ^* s.t. $G_{\theta^*}(\mathbf{Z}) \stackrel{\mathrm{d}}{\approx} \mathbf{X}$



Neural Networks

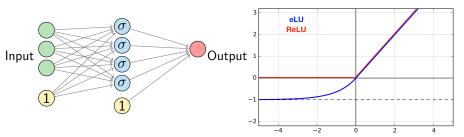


Figure: Example of a one-hidden layer neural network with 4 neurons mapping from a 3 to a 1 dimensional space. The symbol σ represents the transformation with an activation function while the arrows stand for different parameters .

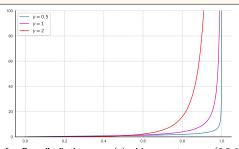
Theorem (Universal Approximation Theorem [Pinkus, 1999])

A one hidden-layer neural can uniformly approximate on a compact set any continuous function with arbitrary precision as long as σ is not a polynomial.

Extreme-value theory (in dimension 1)

Focusing on heavy-tailed distributions ($F \in \mathrm{MDA}(\mathsf{Fr\acute{e}chet})$), the tail quantile function $U(t) := q(1-1/t), \forall t > 1$, is **regularly varying** with tail index $\gamma > 0$ ($U \in \mathcal{RV}_{\gamma}$) and $U(t) = t^{\gamma}L(t)$ with $L \in \mathcal{RV}_{0}$, *i.e.*

$$L(\lambda t)/L(t) \to 1 \text{ as } t \to \infty, \forall \lambda > 0.$$

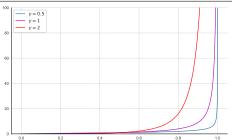


Quantile function of a Burr distribution $u\mapsto q(u)$ with parameters $\gamma=\{0.5,1,2\}$ and $\rho=-1$

Extreme-value theory (in dimension 1)

Focusing on heavy-tailed distributions ($F \in \mathrm{MDA}(\mathsf{Fr\'echet})$), the tail quantile function $U(t) := q(1-1/t), \forall t > 1$, is **regularly varying** with tail index $\gamma > 0$ ($U \in \mathcal{RV}_{\gamma}$) and $U(t) = t^{\gamma}L(t)$ with $L \in \mathcal{RV}_{0}$, *i.e.*

$$L(\lambda t)/L(t) \to 1$$
 as $t \to \infty, \forall \lambda > 0$.



Quantile function of a Burr distribution $u \mapsto q(u)$ with parameters $\gamma = \{0.5, 1, 2\}$ and $\rho = -1$

△ Challenges **△**

- The UAT doesn't guarentee good guarentee accuracy in the tail
- If Z is either bounded or a Gaussian vector, by no means $G_{\theta}(\mathbf{Z}) \stackrel{\mathrm{d}}{=} X$

Statistical framework

Given an independent sample $\{X_1, \ldots, X_n\}$ from F_X , we focus on the simulation of $Y(\delta_n) = X \mid X > F_X^{-1}(1 - \delta_n)$, where $\delta_n \to 0$ as $n \to \infty$.

Statistical framework

Given an independent sample $\{X_1,\ldots,X_n\}$ from F_X , we focus on the simulation of $Y(\delta_n)=X\mid X>F_X^{-1}(1-\delta_n)$, where $\delta_n\to 0$ as $n\to \infty$.

Lemma

Assume that the distribution of X is continuous. Then, for all $\delta_n \in (0,1)$

$$Y(\delta_n) \stackrel{\mathrm{d}}{=} q_{Y(\delta_n)}(1-Z) = F_X^{-1}(1-\delta_n Z),$$

with $Z \sim \mathcal{U}([0,1])$.

Statistical framework

Given an independent sample $\{X_1,\ldots,X_n\}$ from F_X , we focus on the simulation of $Y(\delta_n)=X\mid X>F_X^{-1}(1-\delta_n)$, where $\delta_n\to 0$ as $n\to \infty$.

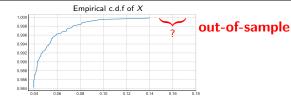
Lemma

Assume that the distribution of X is continuous. Then, for all $\delta_n \in (0,1)$

$$Y(\delta_n) \stackrel{\mathrm{d}}{=} q_{Y(\delta_n)}(1-Z) = F_X^{-1}(1-\delta_n Z),$$

with $Z \sim \mathcal{U}([0,1])$.

For small values of z or δ_n , $F_\chi^{-1}(1-\delta_nz)$ is an **extreme quantile** likely to be **larger sample maximum**



Take advantage of $U_X(t)=t^{\gamma}L(t)$ $(U_X\in\mathcal{RV}_{\gamma})$ to link the extreme quantile

$$q_{Y(\delta_n)}(1-z) = F_X^{-1}(1-\delta_n z) = U_X(1/(\delta_n z)),$$

and the threshold $F_X^{-1}(1-\delta_n)=U_X(1/\delta_n)$.

Take advantage of $U_X(t) = t^{\gamma} L(t)$ ($U_X \in \mathcal{RV}_{\gamma}$) to link the extreme quantile

$$q_{Y(\delta_n)}(1-z) = F_X^{-1}(1-\delta_n z) = U_X(1/(\delta_n z)),$$

and the threshold $F_X^{-1}(1-\delta_n)=U_X(1/\delta_n)$.

$$\log \frac{U_X(1/(\delta_n \mathbf{z}))}{-\log U_X(1/\delta_n)} = \frac{\gamma \log (1/\mathbf{z})}{\gamma \log (1/\mathbf{z})}, \log(1/\delta_n)$$

$$=: \frac{f}{(\log(1/\mathbf{z}), \log(1/\delta_n))}$$

with

$$(x_1,x_2>0)\mapsto oldsymbol{arphi}(x_1,x_2):=\log\left(rac{L(\exp(x_1+x_2))}{L(\exp(x_2))}
ight)$$

Take advantage of $U_X(t)=t^{\gamma}L(t)$ ($U_X\in\mathcal{RV}_{\gamma}$) to link the extreme quantile

$$q_{Y(\delta_n)}(1-z) = F_X^{-1}(1-\delta_n z) = U_X(1/(\delta_n z)),$$

and the threshold $F_{x}^{-1}(1-\delta_{n})=U_{X}(1/\delta_{n})$.

$$\log \frac{U_X(1/(\delta_n z))}{-\log U_X(1/\delta_n)} = \frac{\gamma}{\gamma} \log (1/z) + \frac{\varphi}{\gamma} (\log(1/z), \log(1/\delta_n))$$

$$\log \frac{U_X(1/(\delta_n z))}{\log U_X(1/\delta_n)} = \frac{\gamma}{\gamma} \log (1/z) + \frac{\varphi}{\gamma} (\log(1/z))$$
$$=: f(\log(1/z), \log(1/\delta_n))$$

$$(x_1,x_2>0)\mapsto \boldsymbol{\varphi}(x_1,x_2):=\log\left(\frac{\boldsymbol{L}(\exp(x_1+x_2))}{\boldsymbol{L}(\exp(x_2))}\right)$$

Unknown quantities.

Tail index γ

- Intermediate quantile $U_X(1/\delta_n)$
- 3 Log-spacing function $\varphi(\cdot,\cdot)$

Take advantage of $U_X(t) = t^{\gamma} L(t)$ ($U_X \in \mathcal{RV}_{\gamma}$) to link the extreme quantile

$$q_{Y(\delta_n)}(1-z) = F_X^{-1}(1-\delta_n z) = U_X(1/(\delta_n z)),$$

and the threshold $F_X^{-1}(1-\delta_n)=U_X(1/\delta_n)$.

Idea. Introduce the log-spacing function,

$$\log \frac{U_X(1/(\delta_n z))}{\log U_X(1/\delta_n)} = \frac{\gamma}{\gamma} \log (1/z) + \frac{\varphi}{\gamma} (\log(1/z), \log(1/\delta_n))$$

with $(x_1, x_2 > 0) \mapsto \varphi(x_1, x_2) := \log \left(\frac{L(\exp(x_1 + x_2))}{L(\exp(x_2))} \right)$

Unknown quantities.

- 1 Intermediate quantile $U_X(1/\delta_n)$
- Tail index γ
- 3 Log-spacing function $\varphi(\cdot,\cdot)$

Weissman, [Weissman, 1978] $\hat{\gamma}(k)$ [Hill, 1975]

 $=: f(\log(1/z), \log(1/\delta_n))$

Bias correction (second order)

Second order condition. There exist $\gamma > 0$, $\rho_2 \le 0$ and a function A_2 with $A_2(t) \to 0$ as $t \to \infty$ s.t. for all $z \ge 1$

$$\log\left(rac{L(yt)}{L(t)}
ight) = A_2(t)\int_1^y y_2^{
ho_2-1}\,\mathrm{d}y_2 + o(A_2(t)), \quad ext{ as } t o\infty$$

Bias correction (second order)

Second order condition. There exist $\gamma > 0$, $\rho_2 \le 0$ and a function A_2 with $A_2(t) \to 0$ as $t \to \infty$ s.t. for all $z \ge 1$

$$\log\left(\frac{L(yt)}{L(t)}\right) = A_2(t) \int_1^y y_2^{\rho_2 - 1} \,\mathrm{d}y_2 + o(A_2(t)), \quad \text{ as } t \to \infty$$

Ignoring the $o(\cdot)$ term and assuming (Hall-Welsh model)

$$A_2(t)=c_2t^{\rho_2}$$

with $c_2 \neq 0$ and $ho_2 < 0$, give a parametric approximation of $arphi(x_1, x_2)$ as

$$\begin{split} \varphi^{\text{NN}_{J}}(x_{1}, x_{2}; \theta) &= c_{2} \exp(\rho_{2} x_{2}) (\exp(\rho_{2} x_{1}) - 1) / \rho_{2} \\ &= c_{2} \Big(\sigma^{\text{E}} \big(\rho_{2} (x_{1} + x_{2}) \big) - \sigma^{\text{E}} \big(\rho_{2} x_{2} \big) \Big) / \rho_{2}, \end{split}$$

with $\theta = (\rho_2, c_2)$ and where $\sigma^{E}(x) = \mathbb{1}_{\{x \ge 0\}} x + \mathbb{1}_{\{x < 0\}} (\exp(x) - 1)$ is the **eLU** function, see [Allouche et al., 2024].

Bias correction (*J*-th order)

J-th order condition. There exist $\gamma > 0$, and $\forall j \in \{2, ..., J\}, \rho_i \leq 0$ and functions A_i with $A_i(t) \to 0$ as $t \to \infty$ s.t. for all $y \ge 1$

and functions
$$A_j$$
 with $A_j(t) \to 0$ as $t \to \infty$ s.t. for all $y \ge 1$

$$\log\left(\frac{L(yt)}{L(t)}\right) = \sum_{j=2}^J \prod_{\ell=2}^j A_\ell(t) R_j(z) + o\left(\prod_{j=2}^J A_j(t)\right) \quad \text{as } t \to \infty, \quad (1)$$

$$R_j(z) = \int_1^y y_2^{\rho_2 - 1} \int_1^{y_2} y_3^{\rho_3 - 1} \cdots \int_1^{y_{j-1}} y_j^{\rho_j - 1} \, \mathrm{d}y_j \ldots \mathrm{d}y_3 \, \mathrm{d}y_2.$$

Assume the J-th order condition holds with $A_i(t) = c_i t^{\rho_i}$, where $c_i \neq 0$ and $\rho_i < 0$ for $j \in \{2, \dots, J\}$. Then, for all $x_1 > 0$ and $x_2 > 0$

Assume the J-th order condition holds with
$$A_j(t)=c_jt^{\rho_j}$$
, where $c_j\neq 0$ and $\rho_j<0$ for $j\in\{2,\ldots,J\}$. Then, for all $x_1>0$ and $x_2>0$

Proposition

Assume the J-th order condition holds with
$$A_j(t) = c_j t^{\rho_j}$$
, where $c_j \neq 0$ and $\rho_j < 0$ for $j \in \{2, \ldots, J\}$. Then, for all $x_1 > 0$ and $x_2 > 0$
$$\varphi(x_1, x_2) = \sum_{i=1}^{J(J-1)/2} w_i^{(1)} \left(\sigma^{\mathrm{E}} \left(w_i^{(2)} x_1 + w_i^{(3)} x_2 \right) - \sigma^{\mathrm{E}} (w_i^{(4)} x_2) \right) + o(\ldots)$$

with $w_i^{(1)} \in \mathbb{R}$, $w_i^{(2)} < 0$, $w_i^{(3)} < 0$, $w_i^{(4)} < 0$, $\forall i \in \{1, \dots, J(J-1)/2\}$.

Results

Neural Network approximation.

$$q_{Y(\delta_n)}^{\text{NN}_J}(1-\mathbf{z};\phi) := F_X^{-1}(1-\delta_n) \exp\left(f^{\text{NN}_J}(\log(1/\mathbf{z}),\log(1/\delta_n);\phi)\right)$$
 (2)

where
$$f^{\mathbb{NN}_J}(x_1, x_2; \phi) := w_0 x_1 + \varphi^{\mathbb{NN}_J}(x_1, x_2; \theta)$$
, with $\phi := (w_0, \theta)$.

Results

Neural Network approximation.

$$q_{Y(\delta_n)}^{\text{NN}_J}(1-\mathbf{z};\phi) := F_X^{-1}(1-\delta_n) \, \exp\left(f^{\text{NN}_J}(\log(1/\mathbf{z}),\log(1/\delta_n);\phi)\right) \quad \text{(2)}$$

where $f^{\text{NN}_J}(x_1, x_2; \phi) := w_0 x_1 + \varphi^{\text{NN}_J}(x_1, x_2; \theta)$, with $\phi := (w_0, \theta)$.

Theorem

Assume the J-th order conditions of the Proposition 1 hold. Then, there exists a parameter by θ^* and a threshold $t_0 \in (0,1)$ such that the one hidden-layer NN (2) with J(J-1) neurons verifies

$$\sup_{\mathbf{z} \in (0,1]} \left| \log q_{Y(\delta_n)}(1-\mathbf{z}) - \log q_{Y(\delta_n)}^{\mathtt{NN}_J}(1-\mathbf{z};\phi^\star) \right| \leq |\bar{\rho}_J \bar{c}_J| \, \delta_n^{-\bar{\rho}_J},$$

for all $0 < \delta_n \le t_0$, and where $\bar{c}_J = c_2 \times \cdots \times c_J$, $\bar{\rho}_J = \rho_2 + \cdots + \rho_J$.

ExcessGAN

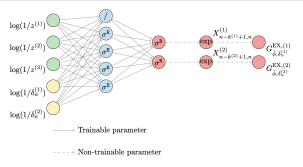


Figure: Generator of the ExcessGAN with q=3 and D=2

Versions.

- **1 Fixed-level**: Plug the ExcessGAN generator into the GAN optimization problem for fixed levels $\delta_n^{(m)}, m \in \{1, \dots, D\}$
- 2 Level-varying: Conditional extansion method with adapted optimization problem and learning algorithm, see [Allouche et al., 2025, Section 3.2]

$$\operatorname*{arg\,min}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \max_{\boldsymbol{\phi} \in \boldsymbol{\Phi}} (\mathsf{E}_{P\mathbf{U}} \left\{ \mathsf{E}_{P\mathbf{Y}\left(\mathbf{u}_{\boldsymbol{\eta}}\right)} \left\{ \mathsf{log}\, D_{\boldsymbol{\phi}}^{\mathrm{EX}}(\mathbf{Y}, \boldsymbol{\delta}_{\boldsymbol{n}}) \right\} \right\} + \mathsf{E}_{P\mathbf{U}} \left\{ \mathsf{E}_{P\mathbf{Z}} \left\{ \mathsf{log} \left[1 - D_{\boldsymbol{\phi}}^{\mathrm{EX}} \left\{ G_{\boldsymbol{\theta}}^{\mathrm{EX}}(\mathbf{Z}, \boldsymbol{\delta}_{\boldsymbol{n}}), \boldsymbol{\delta}_{\boldsymbol{n}} \right\} \right] \right\} \right\})$$

Pseudo-code

Algorithm 1: Level-varying ExcessGAN training

Input: m_U , batch size of the conditional variable,

 m_X , batch size of the data for each conditional value

a, left support of the conditional distribution

Output: $(\hat{\theta}, \hat{\phi})$, trained parameters

1 for number of iterations do

sample a minibatch of m_U levels $\{\delta_k^{(1)} \sim \mathcal{U}(a,1), \dots, \delta_k^{(D)} \sim \mathcal{U}(a,1)\}_{k=1}^{m_U}$ and store the associated thresholds $\{u_k^{(1)}, \dots, u_k^{(D)}\}_{k=1}^{m_U}$ for $k=1:m_U$ do [sample a minibatch of m_X data $\{\mathbf{x}_{i,k} \in Q(\boldsymbol{\delta}_k)\}_{i=1}^{m_X}$ with replacement

Update the discriminator by computing the gradient

$$\nabla_{\phi} \frac{1}{m_X m_U} \sum_{k=1}^{m_U} \sum_{i=1}^{m_X} \left[\log(D_{\phi}^{\text{EX}}(\mathbf{x}_{i,k}, \boldsymbol{\delta}_k)) + \log(1 - D_{\phi}^{\text{EX}}(G_{\boldsymbol{\theta}}^{\text{EX}}(\mathbf{z}_{i,k}, \boldsymbol{\delta}_k), \boldsymbol{\delta}_k)) \right],$$

with $\mathbf{z}_{i,k} \sim p_{\mathbf{Z}}$.

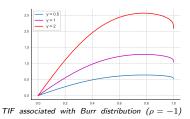
Update the generator by computing the gradient

$$\nabla_{\boldsymbol{\theta}} \frac{1}{m_X m_U} \sum_{k=1}^{m_U} \sum_{i=1}^{m_X} \left[\log(1 - D_{\boldsymbol{\phi}}^{\text{EX}}(G_{\boldsymbol{\theta}}^{\text{EX}}(\mathbf{z}_{i,k}, \boldsymbol{\delta}_k), \boldsymbol{\delta}_k)) \right],$$

with $\mathbf{z}_{i,k} \sim p_{\mathbf{Z}}$.

1. Find a Tail-index function **(TIF)** f^{TIF} **continuous** and **bounded** on [0,1] for all **heavy-tailed** distributions s.t. $f^{\text{TIF}}(u) \to \gamma$ as $u \to 1$

$$f^{ ext{TIF}}(u) = -rac{\log\left(q(u)
ight)}{\log\left(rac{1-u^2}{2}
ight)}$$



1. Find a Tail-index function (**TIF**) f^{TIF} continuous and bounded on [0,1] for all heavy-tailed distributions s.t. $f^{\text{TIF}}(u) \rightarrow \gamma$ as $u \rightarrow 1$

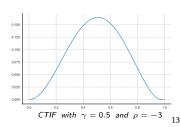
$$f^{\text{TIF}}(u) = -\frac{\log\left(q(u)\right)}{\log\left(\frac{1-u^2}{2}\right)}$$

TIF associated with Burr distribution
$$(\rho=-1)$$

2. For better approximation, find a Correction TIF (CTIF)

$$f^{ ext{CTIF}}(u) = f^{ ext{TIF}}(u) - \sum_{k=1}^{6} \kappa_k e_k(u)$$

which enjoys higher regularity around u = 1



Experiments - Simulated data

We simulate excess in the upper orthant

$$Q(\delta_n) := \left\{ \mathbf{x} \in \mathbb{R}^D \mid x^{(1)} > F_{X^{(1)}}(1 - \delta_n^{(1)}), x^{(2)} > F_{X^{(2)}}(1 - \delta_n^{(2)}) \right\}$$

from a Gumbel Copula with a dependence parameter μ and Burr margins (γ, ρ) using basic acceptance-rejection method - **54 configurations**.

GAN, EV-GAN, Fixed-level ExcessGAN.

- \bullet $\delta_n = (0.1, 0.1)^{\top}$ with 1000 training and 10K testing points
- $\delta_n = (0.05, 0.05)^{\top}$ with 250 training and 10K testing points

Level-varying ExcessGAN.

- $\delta_n \in [0.5, 1]^2$
- 100K training points and same testing sets as above
- ▶ Performance: Mean square logarithmic error
- **⊳** Results:
 - FL ExcessGAN outperforms GAN, EV-GAN (44/54)
 - LV ExcessGAN particularly efficient for $\gamma \geq 0.5$ in setting (2)

Simulations $\delta_n = (0.1, 0.1)^{\top}, \ \mu = 2, \ (\rho_1, \rho_2) = (-1, -3)$ $\gamma = 0.9$ $\gamma = 0.3$ $\gamma = 0.5$ GAN **EV-GAN** (d) FL-ExcessGAN LV-ExcessGAN 15 / 22

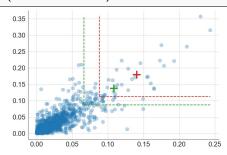
Simulations $\delta_n = (0.05, 0.05)^{\top}, \ \mu = 2, \ (\rho_1, \rho_2) = (-1, -3)$ $\gamma = 0.9$ $\gamma = 0.3$ $\gamma = 0.5$ GAN (a) **EV-GAN** (d) FL-ExcessGAN (g) LV-ExcessGAN 16 / 22

Application to crypto data - Risk Metrics

- ightharpoonup Consider negative daily log-returns of BTC/USD and ETH/USD during 8 years (1116 observations) with $\hat{\gamma}_{\tt btc} \approx \hat{\gamma}_{\tt eth} \approx 0.32$ and $\hat{\mu} \approx 2.4$.
- \triangleright Focus on the estimation of the Expected Shortfall, for $m \in \{1,2\}$

$$\mathrm{ES}^{(m)}(1-\delta_n) = \frac{1}{\delta_n^{(m)}} \int_0^{\delta_n^{(m)}} F_{X^{(m)}}^{-1}(1-u) \, \mathrm{d}u = \int_0^1 q_{Y^{(m)}(\delta_n^{(m)})}(1-z) \, \mathrm{d}z.$$

 \triangleright Estimation at levels $\delta_n = (0.1, 0.1)^{\top}$ (72 observations) and $\delta_n = (0.05, 0.05)^{\top}$ (31 observations)



Simulated Expected Shortfalls

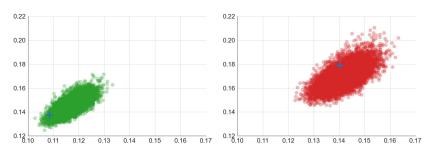


Figure: Simulated Expected Shortfalls by level-varying ExcessGAN and empirical Expected Shortfall (blue plus sign) at levels $\delta_n = (0.1, 0.1)^{\top}$ (a) and $\delta_n = (0.05, 0.05)^{\top}$ (b) for the pairs BTC/USD (x-axis) and ETH/USD (y-axis)

- Classical bootstrap: unsuitable for estimating means in heavy-tailed settings.
- Proposed method: take into account unseen points without assumptions on the underlying distribution.
- Next: Compare with another neural network ES estimator [Allouche et al., 2023]

Conclusion

- Generative model dedicated to extremes which is able to learn the distribution of the excess considering a bias reduction technique through an appropriate eLU basis functions.
- Dominance of the ExcessGAN in a bunch of heavy-tailed cases, with a benefit to use the FL version when enough observations are available in the tails; but also with the LV version as a competitive alternative that performs well in all regions.
- Application for risk measure estimation using data augmentaiton

Next: Address the extreme dependence structure

References I

Allouche, M., Girard, S., and Gobet, E. (2023).
Learning out-of-sample expected shortfall and Conditional Tail
Moments with neural networks. application to cryptocurrency data.

Neural Networks, 60(62G32):68T07.

Allouche, M., Girard, S., and Gobet, E. (2024). Estimation of extreme quantiles from heavy-tailed distributions with neural networks.

Statistics and Computing, 34:12.

References II

Allouche, M., Girard, S., and Gobet, E. (2025).

ExcessGAN: simulation above extreme thresholds using generative adversarial networks.

Under review.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014).

Generative adversarial nets.

In Advances in neural information processing systems, pages 2672–2680.

Hill, B. M. (1975).

A simple general approach to inference about the tail of a distribution. *The Annals of Statistics*, 3(5):1163–1174.

References III

Pinkus, A. (1999).

Approximation theory of the MLP model in neural networks. In *Acta numerica*, volume 8, pages 143–195. Cambridge University Press, Cambridge.

Weissman, I. (1978).

Estimation of parameters and large quantiles based on the k largest observations.

Journal of the American Statistical Association, 73(364):812–815.