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Motivations

Figure: Simulated observations from a bivariate Gumbel copula with two Burr margins. Two extreme regions are represented
by green and red dashed lines.

How to sample from the distribution of the excess?
@ Stochastic models: high computational complexity
o Data based models: few observations by nature

Ingredients: Generative Modeling, Neural Networks, Extreme Value Theory
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Generative modeling

Objective. Given observations {Xi,...,X,} assumed to be indep. sam-
pled from an unknown distribution px on X C RP, find a generator
G : Z — X and a latent distribution pz defined on Z C RY, s.t.

GZ)LX, Z~p:z
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Which pz? Which ¢q? How to approximate G?

GANs. | ]

° . Learn 0* s.t. Gy«(Z) < x
o Discriminator: Learn ¢* s.t. Dyg«(X) ~ 1 and Dy (Gy(Z)) ~ 0

(@)1
@:X{ Dy(X)

X5 )O

; gé D4(Go(2))

arggenéin argéﬂ@ax {]pr(log DQ(X)) + ]EPZ (Iog (1 — Dy (GQ(Z))))}
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Neural Networks

eLU
ReLU

Figure: Example of a one-hidden layer neural network with 4 neurons mapping from a 3 to a 1 dimensional space. The
symbol o represents the transformation with an activation function while the arrows stand for different parameters .

Theorem (Universal Approximation Theorem [

A one hidden-layer neural can uniformly approximate on a compact set
any continuous function with arbitrary precision as long as o is not a
polynomial.
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Extreme-value theory (in dimension 1)

Focusing on heavy-tailed distributions (F & MDA (Fréchet)), the tail
quantile function U(t) := q(1 — 1/t),Vt > 1, is regularly varying with
tail index v > 0 (U € RV,) and U(t) = t7L(t) with L € RV, i.e.

L(At)/L(t) — 1 as t — oo, VA > 0.
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Quantile function of a Burr distribution v — g(u) with parameters v = {0.5,1,2} and p = —1
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A Challenges A
@ The UAT doesn’t guarentee good guarentee accuracy in the tail

e If Z is either bounded or a Gaussian vector, by no means Gy(Z) 4 x
5722




Statistical framework

Given an independent sample {Xi,..., X,} from Fx, we focus on the sim-
ulation of Y(8,) = X | X > Fy'(1 — d,,), where 6, — 0 as n — o0.
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Statistical framework

Given an independent sample {Xi,..., X,} from Fx, we focus on the sim-
ulation of Y(8,) = X | X > Fy'(1 — d,,), where 6, — 0 as n — o0.

Assume that the distribution of X is continuous. Then, for all §, € (0,1)

d _
Y(6n) = qy(s)(1—2) = F'(1—8,2),

with Z ~ U([0, 1]).

A Challenge A
For small values of z or §,, F;l(l — 0pz) is an extreme quantile likely to
be larger sample maximum

Empirical c.d.f of X
i ¥~ out-of-sample
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Extrapolation principle

Take advantage of Ux(t) = t7L(t) (Ux € RV,) to link the extreme quantile
av(s,)(1 = 2) = Fx (1= 6a2) = Ux(1/(6n2)),

and the threshold Fy (1 —d,) = Ux(1/d,).



Extrapolation principle

Take advantage of Ux(t) = t7L(t) (Ux € RV,) to link the extreme quantile

qY((;n)(]. — Z) = F;l(l — (5,,2) =

and the threshold Fy (1 —d,) = Ux(1/d,).

Ux(1/(652)),

Idea. Introduce the log-spacing function,

log Ux(1/(dnz)) — log Ux(1/d,) = vlog (1/2) + ¢(log(1/z), log(1/dn))
=: f(log(1/2),log(1/6n))

with

(x1,x2 > 0) = p(x1,x2) := log <

Man+bD>

L(exp(x2))
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Extrapolation principle
Take advantage of Ux(t) = t7L(t) (Ux € RV,) to link the extreme quantile

av(s,)(1— 2) = Fx'(1 = 6,2) = Ux(1/(a2)),

and the threshold Fy (1 —d,) = Ux(1/d,).

Idea. Introduce the log-spacing function,

log Ux(1/(dnz)) — log Ux(1/d,) = vlog (1/2) + ¢(log(1/z), log(1/dn))
=: f(log(1/2),log(1/6n))

with
L(exp(x1 + x2))
x1,x2 > 0) — v(x1,x2) :=lo <
( R W )
Unknown quantities. Weissman. | ]
@ Intermediate quantile Ux(1/9,) Q X, k1.0 k= [0y
@ Tail index ~ Q (k)1 ]

© Log-spacing function ¢ (-, -) Q0 -




Bias correction (second order)

Second order condition. There exist 7 > 0, p» < 0 and a function A
with A(t) - 0ast — ocos.t. forallz>1

8 (LL%)) = Ao(1) / yerHdys + o(Ao(t)), ast — oo




Bias correction (second order)

Second order condition. There exist 7 > 0, p» < 0 and a function A
with A(t) - 0ast — ocos.t. forallz>1

8 (LL%)) = Ao(1) / yerHdys + o(Ao(t)), ast — oo

Ignoring the o(-) term and assuming (Hall-Welsh model)
Ax(t) = cot??
with ¢ # 0 and p < 0, give a parametric approximation of ©(xi, x2) as
"™ (x1,x2; 0) = c2 exp(p2x2)(exp(p2x1) — 1)/ p2

=0 (UE(pz (x1+x)) =" (p 2X2))/p2,

with 8 = (p2, c2) and where 0®(x) = L, >0yXx + Lix<oy(exp(x) — 1) is the

eLU function, see [
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Bias correction (J-th order)

J-th order condition. There exist v > 0, and Vj € {2,...,J}, p; <0
and functions A; with A;(t) - 0ast — ocos.t. forall y >1

J J
|og(%)=j§:;HAz<tm<z)+o [[40)] =

R = [yt [F e [ ey g
j\Z) =1 Y2 ] y3 ) Yj Yj-.-dysdyz.

Assume the J-th order condition holds with A;(t) = c;jt’/, where ¢; # 0
and pj <0 forj € {2,...,J}. Then, for all x; >0 and xo >0

J(J-1)/2

o(x1,x) = Z (1) ( (W(z)Xl + W( )x2> E(Wi(4)X2)) +o(...)

i=1

with w() € R, w® <0, w® <0, w!¥ <0, vie{1,...,JJ-1)/2}. J




Results

Neural Network approximation.
Ay (s, (1 = 2:0) == Fx (1 = 6n) exp (f"(log(1/2). log(1/6,): ¢))  (2)

where ™ (x1, x2; @) := wox1 + " (x1,x0;0), with ¢ := (wp, ).



Results

Neural Network approximation.
Ay (s, (1 = 2:0) == Fx (1 = 6n) exp (f"(log(1/2). log(1/6,): ¢))  (2)

where ™ (x1, x2; @) := wox1 + " (x1,x0;0), with ¢ := (wp, ).

Assume the J-th order conditions of the Proposition 1 hold. Then, there
exists a parameter by 6* and a threshold ty € (0,1) such that the one
hidden-layer NN (2) with J(J — 1) neurons verifies

up, )log qy (5, (1 = 2) = log qys (1 — z; ¢*)‘ < |psEsl6n=",
ze(0,

for all 0 < 6, < ty, and where C; = co X --- X ¢y, py=p2+ -+ py.
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ExcessGAN

log(l/zm)Q S
log(l/z(z))Q
log(l/z(z))O

log(1/65")

1og<1/65f>>©

Trainable parameter

Non-trainable parameter

Figure: Generator of the ExcessGAN with ¢ =3 and D =2

Versions.

© Fixed-level:

problem for fixed levels (5£,m), me{l,...,D}

@ Level-varying: Conditional extansion method with adapted optimization
problem and learning algorithm, see [

arg min max (Ep,

0cO

525 ey {Epv(uy) 1108 D5 (Y 80} } + By {Epy {108 [1 = D™ {652, 8), 80} ] } })

Plug the ExcessGAN generator into the GAN optimization

, Section 3.2]
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Pseudo-code

Algorithm 1: Level-varying ExcessGAN training

Input: my, batch size of the conditional variable,
mx, batch size of the data for each conditional value
a, left support of the conditional distribution
Output: (0, ¢), trained parameters
1 _for number of iterations do

2 for k. =1:my do

mx

sample a minibatch of my levels {6,&1) ~U(a,1),... ,5,<€D) ~U(a, 1)}
and store the associated thresholds {UE:), e uiD)}ZZI

| sample a minibatch of my data {x;x € Q(d))};2} with replacement

Update the discriminator by computing the gradient

my mx

1
¢nzxwz[7

k=1i=1

with z; j ~ pz.
Update the generator by computing the gradient

1 my mx
\v log(1 — DEX(G5X(zi 1. 81),81))] .
mem[;;;[o( b (Go™ (2ik, Ok) k))]

with z; j, ~ pz.

D0 loa(DE* (xi k. 8k)) + log(1 — DX (GE™ (2ik, 8k). 04))]
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Competitor: EV-GAN [Allouche et al., 2022]

1. Find a Tail-index function (TIF) ™' continuous and bounded on
[0, 1] for all heavy-tailed distributions s.t. ' (u) — v asu — 1

log (q(U))
(%)

log ( =

fTIF(u) _

TIF associated with Burr distribution (p = —1)



Competitor: EV-GAN 1

1. Find a Tail-index function (TIF) ™' continuous and bounded on
[0, 1] for all heavy-tailed distributions s.t. ' (u) — v asu — 1

log ( q(u)

()
o5 (')

fTIF(u) _

TIF associated with Burr distribution (p = —1)

2. For better approximation, find a Correction TIF (CTIF)

6

FOTIE () = FTF (u) =)~ kpeen(u)

k=1

which enjoys higher regularity around v =1

M oz o a6 m o
CTIF with v =0.5 and p = —3 13/22



Experiments - Simulated data

We simulate excess in the upper orthant
Q6n) = {x € R | x) > Fyy (1= 61), @ > Fy(1 - 0) |

from a Gumbel Copula with a dependence parameter 1 and Burr margins
(7, p) using basic acceptance-rejection method - 54 configurations.

GAN, EV-GAN, Fixed-level ExcessGAN.
@ 6, =(0.1,0.1)" with 1000 training and 10K testing points
@ 6, = (0.05,0.05)" with 250 training and 10K testing points

Level-varying ExcessGAN.
e 6, €[0.5,1]?

@ 100K training points and same testing sets as above

> Performance: Mean square logarithmic error
> Results:
o FL ExcessGAN outperforms GAN, EV-GAN (44/54)
@ LV ExcessGAN particularly efficient for v > 0.5 in setting (2) 14/22



Simulations 5, = (0.1.0.1)7, p = 2. (p1.po) = (=1.-3)

|7:0.3| |7:o.5| |w:o.9|

GAN o

| FL-ExcessGAN |

| LV-ExcessGAN |

o
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Simulations s, = (0.05.0.05)7, = 2. (p1.p0) = (=1, -3)

|7=0.3| |’y:0.5| |7:0.9|

GAN

| FL-ExcessGAN |

| LV-ExcessGAN |
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Application to crypto data - Risk Metrics

(> Consider negative daily log-returns of BTC/USD and ETH/USD during 8
years (1116 observations) with Jptc & Jetn =~ 0.32 and [i =~ 2.4.
> Focus on the estimation of the Expected Shortfall, for m € {1,2}

(m)
1 '
ES(m)(l _ 5n) — 5(m)/0 FX(}")(I = u) du= /0 qY(m)(égm))(l — Z) dz.
n

> Estimation at levels §, = (0.1,0.1)" (72 observations) and
8, = (0.05,0.05) " (31 observations)
=

0.35

0.30

0.25

0.20

+
0.15
0.10
Y
0.05| 2
0.00
0.15 0.20 0.25
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Simulated Expected Shortfalls
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Figure: Simulated Expected Shortfalls by level-varying ExcessGAN and empirical Expected Shortfall (blue plus sign) at levels
5n =(0.1,0.1) T (a) and &, = (0.05,0.05) " (b) for the pairs BTC/USD (x-axis) and ETH/USD (y-axis)

o Classical bootstrap: unsuitable for estimating means in heavy-tailed
settings.

@ Proposed method: take into account unseen points without
assumptions on the underlying distribution.

> Next: Compare with another neural network ES estimator [aiouche et ol , 2023
18/22



Conclusion

o Generative model dedicated to extremes which is able to learn the
distribution of the excess considering a bias reduction technique
through an appropriate eLU basis functions.

@ Dominance of the ExcessGAN in a bunch of heavy-tailed cases,
with a benefit to use the FL version when enough observations are
available in the tails; but also with the LV version as a competitive
alternative that performs well in all regions.

@ Application for risk measure estimation using data augmentaiton

Address the extreme dependence structure
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