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Michaël Allouche Stéphane Girard Emmanuel Gobet

Generative AI Modelling for Extreme Events
The University of Edinburgh

June 13-14, 2025

1 / 22



Motivations

Figure: Simulated observations from a bivariate Gumbel copula with two Burr margins. Two extreme regions are represented
by green and red dashed lines.

How to sample from the distribution of the excess?

Stochastic models: high computational complexity

Data based models: few observations by nature

Ingredients: Generative Modeling, Neural Networks, Extreme Value Theory
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Generative modeling
Objective. Given observations {X1, . . . ,Xn} assumed to be indep. sam-
pled from an unknown distribution pX on X ⊆ RD , find a generator
G : Z → X and a latent distribution pZ defined on Z ⊆ Rq, s.t.

G (Z)
d
= X, Z ∼ pZ.

Which pZ? Which q? How to approximate G?

GANs. [Goodfellow et al., 2014]

Generator: Learn θ⋆ s.t. Gθ⋆(Z)
d
≈ X

Discriminator: Learn ϕ⋆ s.t. Dϕ⋆(X) ≃ 1 and Dϕ⋆(Gθ(Z)) ≃ 0

arg min
θ∈Θ

arg max
ϕ∈Φ

[
EpX

(logDϕ(X)) + EpZ

(
log

(
1 − Dϕ (Gθ(Z))

))]
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Neural Networks

Input
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σ

σ
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Figure: Example of a one-hidden layer neural network with 4 neurons mapping from a 3 to a 1 dimensional space. The
symbol σ represents the transformation with an activation function while the arrows stand for different parameters .

Theorem (Universal Approximation Theorem [Pinkus, 1999])

A one hidden-layer neural can uniformly approximate on a compact set
any continuous function with arbitrary precision as long as σ is not a
polynomial.
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Extreme-value theory (in dimension 1)
Focusing on heavy-tailed distributions (F ∈ MDA(Fréchet)), the tail
quantile function U(t) := q(1− 1/t), ∀t > 1, is regularly varying with
tail index γ > 0 (U ∈ RVγ) and U(t) = tγL(t) with L ∈ RV0, i.e.

L(λt)/L(t) → 1 as t → ∞, ∀λ > 0.
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γ=0.5
γ=1
γ=2

Quantile function of a Burr distribution u 7→ q(u) with parameters γ = {0.5, 1, 2} and ρ = −1

△! Challenges △!
The UAT doesn’t guarentee good guarentee accuracy in the tail

If Z is either bounded or a Gaussian vector, by no means Gθ(Z)
d
= X
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quantile function U(t) := q(1− 1/t), ∀t > 1, is regularly varying with
tail index γ > 0 (U ∈ RVγ) and U(t) = tγL(t) with L ∈ RV0, i.e.

L(λt)/L(t) → 1 as t → ∞, ∀λ > 0.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
γ=0.5
γ=1
γ=2

Quantile function of a Burr distribution u 7→ q(u) with parameters γ = {0.5, 1, 2} and ρ = −1

△! Challenges △!
The UAT doesn’t guarentee good guarentee accuracy in the tail

If Z is either bounded or a Gaussian vector, by no means Gθ(Z)
d
= X

5 / 22



Statistical framework
Given an independent sample {X1, . . . ,Xn} from FX , we focus on the sim-
ulation of Y (δn) = X | X > F−1

X (1− δn), where δn → 0 as n → ∞.

Lemma

Assume that the distribution of X is continuous. Then, for all δn ∈ (0, 1)

Y (δn)
d
= qY (δn)(1− Z ) = F−1

X (1− δnZ ),

with Z ∼ U([0, 1]).

△! Challenge △!
For small values of z or δn, F

−1
X (1− δnz) is an extreme quantile likely to

be larger sample maximum

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
0.984

0.986
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0.992
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0.996

0.998

1.000 ︸︷︷︸
?

Empirical c.d.f of X

out-of-sample
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Extrapolation principle
Take advantage of UX (t) = tγL(t) (UX ∈ RVγ) to link the extreme quantile

qY (δn)(1− z) = F−1
X (1− δnz) = UX (1/(δnz)),

and the threshold F−1
X (1− δn) = UX (1/δn).

Idea. Introduce the log-spacing function,

logUX (1/(δnz))− logUX (1/δn) = γ log (1/z) + φ
(
log(1/z), log(1/δn)

)
=: f

(
log(1/z), log(1/δn)

)
with

(x1, x2 > 0) 7→ φ(x1, x2) := log

(
L(exp(x1 + x2))

L(exp(x2))

)
Unknown quantities.

1 Intermediate quantile UX (1/δn)

2 Tail index γ

3 Log-spacing function φ(·, ·)

Weissman. [Weissman, 1978]

1 Xn−k+1,n, k = ⌊nδn⌋
2 γ̂(k) [Hill, 1975]

3 0
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Bias correction (second order)

Second order condition. There exist γ > 0, ρ2 ≤ 0 and a function A2

with A2(t) → 0 as t → ∞ s.t. for all z ≥ 1

log

(
L(yt)

L(t)

)
= A2(t)

∫ y

1
yρ2−1
2 dy2 + o(A2(t)), as t → ∞

Ignoring the o(·) term and assuming (Hall-Welsh model)

A2(t) = c2t
ρ2

with c2 ̸= 0 and ρ2 < 0, give a parametric approximation of φ(x1, x2) as

φNNJ (x1, x2; θ) = c2 exp(ρ2x2)(exp(ρ2x1)− 1)/ρ2

= c2
(
σE

(
ρ2 (x1 + x2)

)
− σE (ρ2x2)

)
/ρ2,

with θ = (ρ2, c2) and where σE(x) = 1{x≥0}x + 1{x<0}(exp(x)− 1) is the
eLU function, see [Allouche et al., 2024].
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Bias correction (J-th order)
J-th order condition. There exist γ > 0, and ∀j ∈ {2, . . . , J}, ρj ≤ 0
and functions Aj with Aj(t) → 0 as t → ∞ s.t. for all y ≥ 1

log

(
L(yt)

L(t)

)
=

J∑
j=2

j∏
ℓ=2

Aℓ(t)Rj(z) + o

 J∏
j=2

Aj(t)

 as t → ∞, (1)

Rj(z) =

∫ y

1
yρ2−1
2

∫ y2

1
yρ3−1
3 · · ·

∫ yj−1

1
y
ρj−1
j dyj . . . dy3 dy2.

Proposition

Assume the J-th order condition holds with Aj(t) = cj t
ρj , where cj ̸= 0

and ρj < 0 for j ∈ {2, . . . , J}. Then, for all x1 > 0 and x2 > 0

φ(x1, x2) =

J(J−1)/2∑
i=1

w
(1)
i

(
σE

(
w

(2)
i x1 + w

(3)
i x2

)
− σE(w

(4)
i x2)

)
+ o (...)

with w
(1)
i ∈ R, w (2)

i < 0, w
(3)
i < 0, w

(4)
i < 0, ∀i ∈ {1, . . . , J(J − 1)/2}.
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Results

Neural Network approximation.

qNNJY (δn)
(1− z ;ϕ) := F−1

X (1− δn) exp
(
f NNJ (log(1/z), log(1/δn);ϕ)

)
(2)

where f NNJ (x1, x2;ϕ) := w0x1 + φNNJ (x1, x2; θ), with ϕ := (w0, θ).

Theorem

Assume the J-th order conditions of the Proposition 1 hold. Then, there
exists a parameter by θ⋆ and a threshold t0 ∈ (0, 1) such that the one
hidden-layer NN (2) with J(J − 1) neurons verifies

sup
z∈(0,1]

∣∣∣log qY (δn)(1− z)− log qNNJY (δn)
(1− z ;ϕ⋆)

∣∣∣ ≤ |ρ̄J c̄J | δn−ρ̄J ,

for all 0 < δn ≤ t0, and where c̄J = c2 × · · · × cJ , ρ̄J = ρ2 + · · ·+ ρJ .
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ExcessGAN

Figure: Generator of the ExcessGAN with q = 3 and D = 2

Versions.

1 Fixed-level: Plug the ExcessGAN generator into the GAN optimization

problem for fixed levels δ
(m)
n ,m ∈ {1, . . . ,D}

2 Level-varying: Conditional extansion method with adapted optimization
problem and learning algorithm, see [Allouche et al., 2025, Section 3.2]

arg min
θ∈Θ

max
ϕ∈Φ

(EpU

{
EpY(un)

{
logDEX

ϕ (Y, δn)
}}

+ EpU

{
EpZ

{
log

[
1 − DEX

ϕ

{
GEX
θ (Z, δn), δn

}]}}
)
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Pseudo-code
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Competitor: EV-GAN [Allouche et al., 2022]

1. Find a Tail-index function (TIF) f TIF continuous and bounded on
[0, 1] for all heavy-tailed distributions s.t. f TIF(u) → γ as u → 1

f TIF(u) = −
log

(
q(u)

)
log

(
1−u2

2

)
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5 γ= 0.5
γ= 1
γ= 2

TIF associated with Burr distribution (ρ = −1)

2. For better approximation, find a Correction TIF (CTIF)

f CTIF(u) = f TIF(u)−
6∑

k=1

κkek(u)

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.025

0.050

0.075

0.100

0.125

0.150

CTIF with γ = 0.5 and ρ = −3
which enjoys higher regularity around u = 1
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Experiments - Simulated data
We simulate excess in the upper orthant

Q(δn) :=
{
x ∈ RD | x (1) > FX (1)(1− δ

(1)
n ), x (2) > FX (2)(1− δ

(2)
n )

}
from a Gumbel Copula with a dependence parameter µ and Burr margins
(γ, ρ) using basic acceptance-rejection method - 54 configurations.

GAN, EV-GAN, Fixed-level ExcessGAN.

1 δn = (0.1, 0.1)⊤ with 1000 training and 10K testing points

2 δn = (0.05, 0.05)⊤ with 250 training and 10K testing points

Level-varying ExcessGAN.

δn ∈ [0.5, 1]2

100K training points and same testing sets as above

▷ Performance: Mean square logarithmic error
▷ Results:

FL ExcessGAN outperforms GAN, EV-GAN (44/54)
LV ExcessGAN particularly efficient for γ ≥ 0.5 in setting (2) 14 / 22



Simulations δn = (0.1, 0.1)⊤, µ = 2, (ρ1, ρ2) = (−1,−3)

GAN

EV-GAN

FL-ExcessGAN

LV-ExcessGAN

γ = 0.3 γ = 0.5 γ = 0.9
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Simulations δn = (0.05, 0.05)⊤, µ = 2, (ρ1, ρ2) = (−1,−3)

GAN

EV-GAN

FL-ExcessGAN

LV-ExcessGAN

γ = 0.3 γ = 0.5 γ = 0.9
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Application to crypto data - Risk Metrics
▷ Consider negative daily log-returns of BTC/USD and ETH/USD during 8
years (1116 observations) with γ̂btc ≈ γ̂eth ≈ 0.32 and µ̂ ≈ 2.4.
▷ Focus on the estimation of the Expected Shortfall, for m ∈ {1, 2}

ES(m)(1− δn) =
1

δ
(m)
n

∫ δ
(m)
n

0
F−1
X (m)(1− u) du =

∫ 1

0
q
Y (m)(δ

(m)
n )

(1− z) dz .

▷ Estimation at levels δn = (0.1, 0.1)⊤ (72 observations) and
δn = (0.05, 0.05)⊤ (31 observations)
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Simulated Expected Shortfalls

Figure: Simulated Expected Shortfalls by level-varying ExcessGAN and empirical Expected Shortfall (blue plus sign) at levels

δn = (0.1, 0.1)⊤ (a) and δn = (0.05, 0.05)⊤ (b) for the pairs BTC/USD (x-axis) and ETH/USD (y-axis)

Classical bootstrap: unsuitable for estimating means in heavy-tailed
settings.

Proposed method: take into account unseen points without
assumptions on the underlying distribution.

▷ Next: Compare with another neural network ES estimator [Allouche et al., 2023]
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Conclusion

Generative model dedicated to extremes which is able to learn the
distribution of the excess considering a bias reduction technique
through an appropriate eLU basis functions.

Dominance of the ExcessGAN in a bunch of heavy-tailed cases,
with a benefit to use the FL version when enough observations are
available in the tails; but also with the LV version as a competitive
alternative that performs well in all regions.

Application for risk measure estimation using data augmentaiton

▷ Next: Address the extreme dependence structure

19 / 22



References I

Allouche, M., Girard, S., and Gobet, E. (2022).
EV-GAN: Simulation of extreme events with ReLU neural networks.
Journal of Machine Learning Research, 23(150):1–39.

Allouche, M., Girard, S., and Gobet, E. (2023).
Learning out-of-sample expected shortfall and Conditional Tail
Moments with neural networks. application to cryptocurrency data.
Neural Networks, 60(62G32):68T07.

Allouche, M., Girard, S., and Gobet, E. (2024).
Estimation of extreme quantiles from heavy-tailed distributions with
neural networks.
Statistics and Computing, 34:12.

20 / 22



References II

Allouche, M., Girard, S., and Gobet, E. (2025).
ExcessGAN: simulation above extreme thresholds using generative
adversarial networks.
Under review.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., and Bengio, Y. (2014).
Generative adversarial nets.
In Advances in neural information processing systems, pages
2672–2680.

Hill, B. M. (1975).
A simple general approach to inference about the tail of a distribution.
The Annals of Statistics, 3(5):1163–1174.

21 / 22



References III

Pinkus, A. (1999).
Approximation theory of the MLP model in neural networks.
In Acta numerica, volume 8, pages 143–195. Cambridge University
Press, Cambridge.

Weissman, I. (1978).
Estimation of parameters and large quantiles based on the k largest
observations.
Journal of the American Statistical Association, 73(364):812–815.

22 / 22


