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ABSTRACT

This paper addresses the growing concern of cascading extreme events, such as an extreme earth-
quake followed by a tsunami, by presenting a novel method for risk assessment focused on these
domino effects. The proposed approach develops an extreme value theory framework within a Kol-
mogorov–Arnold network (KAN) to estimate the probability of one extreme event triggering another,
conditionally on a feature vector. An extra layer is added to the KAN’s architecture to enforce the
definition of the parameter of interest within the unit interval, and we refer to the resulting neural
model as KANE (KAN with Natural Enforcement). The proposed method is backed by exhaustive
numerical studies and further illustrated with real-world applications to seismology and climatology.

Keywords Bernoulli process · Chained extreme events · KAN · Kolmogorov superposition theorem · Neural network ·
Multivariate extremes · Regression models for extremes

1 Introduction

Record-breaking extreme events—such as catastrophic wildfires, unprecedented flooding, intense hurricanes, and
unparalleled heatwaves—underscore the urgent need to strengthen our quantitative understanding of these occurrences.
Extreme Value Theory (EVT) offers a solid mathematical framework, leveraging regular variation and asymptotic
principles to estimate risks of such events by extrapolating beyond the limits of available data, into the tails of a
distribution (Coles, 2001; Beirlant et al., 2004; de Haan and Ferreira, 2006; Resnick, 2007).

While it is widely recognized by practitioners that extreme events tend to occur in complex sequential forms (Cutter,
2018; Raymond et al., 2020), statistical modelling of this context from an EVT viewpoint is still underdeveloped.
Multivariate EVT, though a natural starting point, falls short by: i) disregarding the triggering role of certain events; ii)
overlooking the order and sequential nature of extreme event cascades; iii) lacking the ability to model feedback loops
between events.

Inspired by the multivariate EVT framework, this paper introduces a novel concept—the POC (Probability of Cascade)
surface—which assesses the probability of domino effects between extreme events conditionally on a covariate or
feature vector x = (x1, . . . , xp)

⊤. As it will be shown below, the POC surface can be interpreted as the probability of a
cascading extremal event, as it quantifies the probability that a trigger event (such as an earthquake exceeding magnitude
u) results in a follow-up event (like a subsequent tsunami) as a function of a covariate. The proposed POC-based
approach is fully general in the sense that the focus can be placed beyond the case where follow-up event is binary. In
particular, we extend the framework to a multi-class setting, allowing for different types of follow-up extreme events,
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Part I

Neural Statistical Modeling of Cascading Extremes
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Introduction and Motivation
Compound, Cascading, and Complex Extreme Events

While it is widely recognized by practitioners that extreme events tend to
occur in complex sequential forms (Cutter, 2018; Raymond et al., 2020),
statistical modelling of such context from an EVT viewpoint is still
underdeveloped.

Multivariate EVT, though a natural starting point, falls short by:

disregarding the triggering role of certain events;

overlooking the order and sequential nature of extreme event cascades;

lacking the ability to model feedback loops between events.
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Introduction and Motivation
The POC Surface

Inspired by the multivariate EVT framework, in this talk I introduce a novel
concept, the POC (Probability of Cascade) surface, to assess the
probability of domino effects between extreme events conditionally on a
covariate or feature vector x ∈ Rp.

The proposed POC-based approach is fully general in the sense that the
focus can be placed beyond the case where follow-up event is binary.

In particular, we extend the framework to a multi-class setting, allowing for
different types of follow-up extreme events.

The case where the follow-up event is continuous includes as a particular
case the conditional coefficient of extremal dependence introduced by Lee
et al. (2024).
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Background

To learn about the POC surface from the data, we develop a neural model
grounded on Kolmogorov’s superposition theorem.

Superpositions are functions of functions.

Example (Superposition of univariate and bivariate functions)

f (x1, x2, x3) = g
(
a(α(x1), β(x2, x3)), b(x1, x2)

)
.

Theorem (Kolmogorov’s superposition theorem)

Let f : [0, 1]d → R be a continuous function. Then,

f (x) =
2d+1∑
i=1

Φ
(2)
i

 d∑
j=1

Φ
(1)
i ,j (xj)

 , x = (x1, . . . , xd)
T,

for some continuous one-dimensional functions Φ
(1)
i ,j and Φ

(2)
j .

A. Kolmogorov
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Background

From an AI perspective, the theorem reveals a two-layer neural network
architecture recently popularized by Liu et al. (2024) following their
extension to deeper settings.

While multi-layer perceptrons are inspired by the universal approximation
theorem (e.g., Berlyand and Jabin, 2023), Kolmogorov–Arnold Networks
(KAN) are a novel and fast-evolving addition to the AI toolbox, and are
rooted on Kolmogorov’s superposition theorem.

A particularly impressive aspect of KAN is that they are based on the
principle any multivariate continuous function can be expressed exactly using
only 2d + 1 outer functions and d inner functions.

In addition to the many developments following Liu et al., it should be
noted that other neural approaches based on this theorem had already
appeared in the literature (Lin and Unbehauen, 1993; Sprecher and
Draghici, 2002; Montanelli and Yang, 2020; Fakhoury et al., 2022).
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Cascading Extremes
Modeling Chained Extreme Events

Let I = {Iu : u ∈ R} be a Bernoulli process and Y ∼ FY be a continuous rv.

We start by introducing the following functional, referred to as alpha, which
plays a central role in our developments:

α ≡ αI = lim
u→y ∗

P(Iu = 1 | Y > u).

Notation: y ∗ = sup{y : FY (y) < 1} is the right endpoint of FY .

Loosely, α is the probability of a follow-up event (like a tsunami Iu = 1),
given a trigger event (such as an earthquake exceeding magnitude u).

The nature of the Bernoulli process I defining the follow-up event opens up
a variety of modeling possibilities as illustrated below.
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Examples of Alpha

Example (Tail dependence coefficient)

If Iu = I (Z > u), where Y and Z have common distribution, then

αTDC ≡ αI = lim
u→y ∗

P(Z > u | Y > u).

Thus, α in (8) includes the well-known tail dependence coefficient as a special
case when the follow-up event involves Z being extreme and observable. ■

Example (Extremal probabilistic index)

If Iu = I (Z > Y ), then

αPI ≡ αI = lim
u→y ∗

P(Z > Y | Y > u),

which can be regarded as extremal version of the probabilistic index (Thas et al.,
2012). ■
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POC Surface
Setup and Definition

Our setup keeps in mind that for some applications the variable Z in the
above examples might be latent, but it assumes that the Bernoulli process I
is always observable.

In practice it is desirable to assess how the α functional may be impacted by
a covariate or feature.

Definition (POC Surface)

Let x = (x1, . . . , xd)
T ∈ X ⊆ Rd . The probability of cascade surface is defined as

POC = {(x, αI (x)) : x ∈ X}, αI (x) = lim
u→y ∗

P(Iu,x = 1 | Yx > u),

where I = {Iu,x : (u, x) ∈ R×X} is a random field with Bernoulli marginal
distributions and {Yx : x ∈ X} is a random field.
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POC Surface
A Kolmogorov–Arnold Approach for Learning from Data

Starting Point (KAN):

αI (x) =
2d+1∑
i=1

Φ
(2)
i

 d∑
j=1

Φ
(1)
i ,j (xj)

 .
Or in function matrix notation

αI (x) = (Φ(2) ◦Φ(1)) x,

where

Φ(1) =


Φ

(1)
1,1 · · · Φ

(1)
1,d

...
. . .

...
Φ

(1)
2d+1,1 · · · Φ

(1)
2d+1,d

 , Φ(2) =


Φ

(2)
1
...

Φ
(2)
2d+1


T

.

Issue: αI (x) may not be in [0, 1]!

M. de Carvalho Cascading Extremes 11 / 42



POC Surface
KANE: KAN with Natural Enforcement

Refined Version (KANE): Let g : R→ [0, 1], and set

αI (x) = g

2d+1∑
i=1

Φ
(2)
i

 d∑
j=1

Φ
(1)
i ,j (xj)

 .
Or in function matrix notation αI (x) = g(Φ(2) ◦Φ(1)) x. Now: αI (x) ∈ [0, 1].
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Deep POC Surface
A Deep Version of the Model a la Liu et al.

Deep Version (L Layer Model): Let g : R→ [0, 1], and set

αI (x) = g(Φ(L−1) ◦ · · · ◦Φ(1)),

where

Φ(l) =


Φ

(l)
1,1 · · · Φ

(l)
1,nl

...
. . .

...
Φ

(l)
nl+1,1 · · · Φ

(l)
nl+1,nl

 ,
where nl is the number of nodes in the lth layer.
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Deep POC Surface
A Kolmogorov–Arnold Approach for Learning from Data

Consider m + 1 equally-spaced knots, t0 < · · · < tm. We model the inner
and outer functions as a linear combination of B-spline basis functions, that
is,

Φ
(l)
i ,j (x) =

K∑
k=1

β
(l)
i ,j ,kB

p
k (x),

for i = 1, . . . , d , where B p
k (x) is a B-spline basis function of degree p

evaluated at x and K = p + m.

The parameter of interest is given by the following collection of matrices

β
(l)
k =


β
(l)
nl ,1,k · · · β

(l)
nl ,d ,k

...
. . .

...
β
(l)
nl+1,1,k · · · β(l)nl+1,d ,k

 ,
where k = 1, . . . ,K and l = 1, . . . ,L.
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Consequences & Extensions
Multi-Trigger Systems

In practice, multiple competing incidents can contribute to trigger in the
follow-up event.

To address this we define a multi-trigger system where we consider
Y1, . . . ,YK as a sequence of identically distributed random fields with

Yk = {Yk,x : x ∈ X}, k = 1, . . . ,K .

Our framework extends to the framework of K trigger events by considering

αI (x) = lim
u→y ∗

P(Iu,x = 1 | Y1,x > u ∨ · · · ∨ YK ,x > u).

This formula simplifies to the original single-trigger case by defining
Yx = min{Y1,x, . . . ,YK ,x}, and hence the theory and methods discussed
earlier readily apply to this context as well.
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Consequences & Extensions
Categorical, Ordinal, and Continuous Follow-up Events

In real-world applications, the follow-up extreme event may come in
different flavors or categories.

Example

For example, j = 0 may represent no tornado, j = 1, supercell tornado, and
j = 2 a non-supercell tornado.

The proposed cascading probability surfaces naturally extend to this context
as follows

αI (x)(j) = lim
u→y ∗

P(Iu,x = j | Yx > u),

where j = 0, . . . , J.
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Monte Carlo Simulation Study
Scenarios A
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Monte Carlo Simulation Study
Scenarios A
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Monte Carlo Simulation Study
Scenarios A
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Real Data Illustration
Applied Rationale and Data Description

Coastal regions are highly vulnerable to tsunamis, with their impacts often
compounded by extreme earthquakes that act as primary triggers.

We now apply the proposed method to quantify the probability of cascade
for tsunami occurrence triggered by extreme earthquakes.

Our analysis uses data from the NCEI/WDS Global Significant Earthquake
Database, provided by the NOAA National Centers for Environmental
Information.

The dataset contains over 5 700 significant earthquakes from 2150 B.C. to
present, defined by criteria such as fatalities, damages over $1 million,
Modified Mercalli Intensity (MMI) X or greater, or the earthquake generated
a tsunami.

Each observation includes event date, location, depth, magnitude, MMI,
and socio-economic impacts (casualties, injuries, property damage), with
references and notes on related events like tsunamis and eruptions.
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Real Data Illustration
Implementation

We threshold the data at their 95% threshold for fitting the POC surface
and consider the features,

(latitude, longitude, depth).

We transform longitude and latitude coordinates to the unit square for
modeling purposes.

Finally, we fit a KAN model with three layers, using a sigmoid activation
function at the output.
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Real Data Illustration
Visualization

Figure: Point pattern of earthquakes (red) and associated tsunami occurrences (blue).
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Real Data Illustration
POC Surface—Depth: Percentile 5
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Real Data Illustration
POC Surface—Depth: Percentile 85
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Part II

Generative Transformer-Based Approaches for Cascading Extremes
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Rationale
Cascades are Natural Models for Generative Extremes

Chains of extreme events and cascades offer a natural starting point for
thinking about generative extremes.

M. de Carvalho Cascading Extremes 26 / 42



Context
Attention is All you Need

The starting point for the construction of our first generative AI approach
for extreme events is based on notions of multi-headed attention as well as
of transformers, as introduced in Vaswani et al (2017); for an introduction
see Bishop & Bishop (2023; §12).
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Context

Whereas the unit of analysis in standard transformers is a sequence of
tokens, in our EVT-based transformer is a sequence of extreme events.

By analogy with language models, where the meaning of a token depends
on its context, the interpretation of an extreme event similarly depends on
the surrounding events.

Example

The sequence of extreme stock losses shown in the above figure is more
indicative of a tech-specific cascade than of a broader macro-financial shock.

The proposed model is conceived to learn from data both:

the most probable continuations of extreme event sequences;

the probabilities of subsequent extremes.
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Closing Remarks
Summary

This talk presented a novel statistical framework to tackle the rising
concern of cascading extreme events—like tsunamis followed by earthquakes
or heatwaves sparking wildfires, which in turn lead to further losses.

The proposed approach aims to offer a novel outlook into triggering
extremal events and their domino effects.

KANE, a neural model based on Kolmogorov’s superposition theorem, was
developed to learn about the proposed POC surface.

In addition, I offered some remarks on how cascades offer a natural starting
point for thinking about generative extremes.

Whereas the unit of analysis in standard transformers is a sequence of
tokens, in our EVT-based transformer is a sequence of extreme events.
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Thank you!

Thank you!
Questions?

Miguel.deCarvalho@ed.ac.uk
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Other Directions
Future Work, I

In practice, either the follow-up or the trigger event may be
functional in the sense of FDA (Functional Data Analysis)
(Horváth and Kokoszka, 2012; Kokoszka, 2017).

For example, we may observe Iu,x = 1 for x over a
continuum rather than over a point x ∈ Rd .

As a concrete instance of this, in the earthquake data
application, the follow-up event could represent the full
region S ⊂ R2 affected by the tsunami, in which case
Iu,x = 1 for all x ∈ S .

While our theory also accommodates this framework,
further investigation is needed to incorporate such
functional events into the inferences in a fully FDA-aligned
fashion.

S
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Other Directions
Future Work, II

The proposed approach may set the stage for extremal
chains of random length (k ≤ d), and also factoring in the
role of the chain’s pathways.

TDMs (Tail Dependence Matrices) (Embrechts et al.,
2016) can perhaps be used govern a Markovian pathway of
the extremal cascade, with the order of events dictated by a
random permutation of {1, . . . , k} based on TDMs’
transition probabilities between extremal events.

This will allow for modelling and learning from the data the
length or size of the extremal cascade (k) as well as the
distribution of the pathway taken by it (say, 4→ 1→ 2→ 3
or 3→ 2→ 1→ 4 as two examples of realizations of the
chain of extremes), where trigger can vary (e.g., Y4 or Y3).

4

1

2

3
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Supporting Information
Model Checking
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Figure: QQ boxplot of Dunn–Smyth residuals.
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QQ Boxplot
Rodu and Kafadar (2022; Journal of Computational and Graphical Statistics)
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Randomized Quantile Residuals
Dun and Smyth (1996; Journal of Computational and Graphical Statistics)
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Randomized Quantile Residuals
Scenarios B

Figure: Monte Carlo means for Scenarios B.
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Randomized Quantile Residuals
Scenarios B

Figure: Monte Carlo means for Scenarios B.
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Randomized Quantile Residuals
Scenarios B

Figure: Monte Carlo means for Scenarios B.
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Randomized Quantile Residuals
Scenarios C

Figure: Monte Carlo means for Scenario C.
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Randomized Quantile Residuals
Scenarios C

Figure: Monte Carlo means for Scenario C.
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Randomized Quantile Residuals
Scenarios C

Figure: Monte Carlo means for Scenario C.
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Universal Approximation Theorem

Theorem (Universal Approximation Theorem)

Suppose f is a continuous function on a compact space X ⊂ Rd and σ is not a
polynomial. Then, for any ε > 0, there exists a one-hidden layer neural network
fθ such that

sup
x∈X
|f (x)− fθ(x)| < ε.

Notation: Here fθ : Rd → R is a one-hidden layer feedforward neural network
composed of K neurons

fθ(x) = b(2) +

K∑
k=1

w (2)
k σ(⟨w

(1)
k , x⟩+ b(1)

k ),

where

θ := {b(2)} ∪ {w(1)
k ,w

(2)
k , b

(1)
k }

K
k=1 ∈ Θ := R× (Rd × R× R)K ,

and where ⟨·, ·⟩ is a scalar product on Rd , and σ : R→ R is a non-linear
activation function.
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