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ABSTRACT

his paper addresses the growing concern of cascading extreme events, such as an extreme earth.
quake followed by a tsunami, by presenting a novel method for risk assessment focused on these
dominoetcts, Th poposd spproach developsan xteme e theory framewor within o Kol
mogorov-Amold network (KAN) to estimate the probabilty of one extreme event riggering another,
condiionally on  feature veeor, An ex( ayer s 0ed 10 the KAN'sarchitctur 1 enfore the
efinition of the parameter of inerest within the unit interval, and we refer o the resuling neural
el s KANE (KAN with Natral Enforcement), The proposed method s buked by exhaustive
numerical studies and further ilustrated with real-world applications o seismology and climatology.
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1 Introduction
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need

Erveme \h]m Theory (EVT) offers a ~()\|d mathemarical framework, leveaging regular variation and asymptotc

priocplesto climai sk of sch cens by extrupolating beyond te s of nable dat, o ke il of 3

Gibution (Colen. 2001: Birant e . 2004, e Han and Ferreir, 2006: Rew

While s widely ecognized by praciiones (hat exreme vents end 10 occur i uvmphx sequential forms (Cutte
8: Raymond et al . statstical modelling of this context from an EVT viewpoint i stll underdeveloped.
Nlvrne EVT, hoigh s el s ptot, . shot o Ao i st el of corin cvens )
overlooking the order and sequential nature of extreme event cascades: i) lacking the ability to model fecdback loops
etween events.
Inspired by EVT framework, this pap sa POC (Probability of Cascade)
surface—which assesses the probability of domino cffects between extreme events conditionally on 4 covariate or
feature vector x = (21..... ) - As it will b shown below, the POC surface can be interpreted as the probabilty of a

prob ata b
1) cesulls in a follow-up event (ke a subsequent tsunami) as & function of a covariae. The proposed POC-based

Cascading Extremes

amazon

(submitted)

2/42



Part |

Neural Statistical Modeling of Cascading Extremes
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Introduction and Motivation

Compound, Cascading, and Complex Extreme Events

@ While it is widely recognized by practitioners that extreme events tend to
occur in complex sequential forms (Cutter, 2018; Raymond et al., 2020),

statistical modelling of such context from an EVT viewpoint is still
underdeveloped.

@ Multivariate EVT, though a natural starting point, falls short by:

e disregarding the triggering role of certain events;
e overlooking the order and sequential nature of extreme event cascades;

e lacking the ability to model feedback loops between events.
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Introduction and Motivation
The POC Surface

@ Inspired by the multivariate EVT framework, in this talk | introduce a novel
concept, the POC (Probability of Cascade) surface, to assess the
probability of domino effects between extreme events conditionally on a
covariate or feature vector x € RP.

@ The proposed POC-based approach is fully general in the sense that the
focus can be placed beyond the case where follow-up event is binary.

@ In particular, we extend the framework to a multi-class setting, allowing for
different types of follow-up extreme events.

@ The case where the follow-up event is continuous includes as a particular
case the conditional coefficient of extremal dependence introduced by Lee
et al. (2024).
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-
Background

@ To learn about the POC surface from the data, we develop a neural model
grounded on Kolmogorov's superposition theorem.

@ Superpositions are functions of functions.

Example (Superposition of univariate and bivariate functions)

f(x1, %2, x3) = g(a(a(x1), B(x2, x3)), b(x1, x2)).

Theorem (Kolmogorov's superposition theorem)

Let f:[0,1]9 — R be a continuous function. Then,

2d+1

d
Fo) =D 0P [ S0l | x=(a, )",
i=1 Jj=1

A. Kolmogorov

. . . . 1 2
for some continuous one-dimensional functions <D( J-) and CDJ(- ).

I
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-
Background

@ From an Al perspective, the theorem reveals a two-layer neural network
architecture recently popularized by Liu et al. (2024) following their
extension to deeper settings.

@ While multi-layer perceptrons are inspired by the universal approximation
theorem (e.g., Berlyand and Jabin, 2023), Kolmogorov—Arnold Networks
(KAN) are a novel and fast-evolving addition to the Al toolbox, and are
rooted on Kolmogorov's superposition theorem.

@ A particularly impressive aspect of KAN is that they are based on the
principle any multivariate continuous function can be expressed exactly using
only 2d + 1 outer functions and d inner functions.

@ In addition to the many developments following Liu et al., it should be
noted that other neural approaches based on this theorem had already
appeared in the literature (Lin and Unbehauen, 1993; Sprecher and
Draghici, 2002; Montanelli and Yang, 2020; Fakhoury et al., 2022).
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Cascading Extremes
Modeling Chained Extreme Events

o Let / ={/,: u € R} be a Bernoulli process and Y ~ Fy be a continuous rv.

We start by introducing the following functional, referred to as alpha, which
plays a central role in our developments:

a=o; = lim P(l,=1| Y >u).

u—y*
@ Notation: y* =sup{y : Fy(y) < 1} is the right endpoint of Fy.

Loosely, a is the probability of a follow-up event (like a tsunami /, = 1),
given a trigger event (such as an earthquake exceeding magnitude u).

The nature of the Bernoulli process | defining the follow-up event opens up
a variety of modeling possibilities as illustrated below.
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-
Examples of Alpha

Example (Tail dependence coefficient)

If I, = 1(Z > u), where Y and Z have common distribution, then

a™® =q; = lim P(Z>ul|Y >u).
u—y*

Thus, o in (8) includes the well-known tail dependence coefficient as a special
case when the follow-up event involves Z being extreme and observable. |

Example (Extremal probabilistic index)
If I, =1(Z >Y), then

aP'=a = lim P(Z>Y|Y >u),
u—y*

which can be regarded as extremal version of the probabilistic index (Thas et al.,
2012). ]
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E—
POC Surface

Setup and Definition

@ Our setup keeps in mind that for some applications the variable Z in the
above examples might be latent, but it assumes that the Bernoulli process /
Is always observable.

@ In practice it is desirable to assess how the o functional may be impacted by
a covariate or feature.

Definition (POC Surface)
Letx=(x, ..., xg)T e X C R?. The probability of cascade surface is defined as

POC = {(x,a(x)) : x € X}, oy(x)= lim P(lux =11 Yy > u),

u—y*

where | = {l,x : (u,x) € R x X'} is a random field with Bernoulli marginal
distributions and {Yx : x € X'} is a random field.
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E—
POC Surface

A Kolmogorov—Arnold Approach for Learning from Data

Starting Point (KAN):

2d+1 d
ai(x) =D o [ ol)x)
i=1 Jj=1

where
1 1 2 T
o ol of?
1) — : . : $? — :
1 1 2
¢(2d)+1,1 e (ng)-&-l,d q>(2d)+1

Issue: o(x) may not be in [0, 1]!
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E—
POC Surface

KANE: KAN with Natural Enforcement
Refined Version (KANE): Let g : R — [0, 1], and set

2d+1

d
2
ax) =g Y o[> ol(x)
=1 Jj=1

Or in function matrix notation a(x) = g(®® o ®M)x. Now: a,(x) € [0, 1].
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|
Deep POC Surface

A Deep Version of the Model a /a Liu et al.

Deep Version (L Layer Model): Let g : R — [0, 1], and set

a(x) = g(<I>(L71) 0---0 <I)(1)),

where " "
<1>1,1 e <1>1,n,
&) = : :
/ /
¢E1/)Jr1,1 e ¢57/)+1,n/

where n; is the number of nodes in the /th layer.
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|
Deep POC Surface

A Kolmogorov—Arnold Approach for Learning from Data

@ Consider m+ 1 equally-spaced knots, tg < -+ < t;. We model the inner
and outer functions as a linear combination of B-spline basis functions, that

is,
ZB’J k

fori=1,..., d, where Bf(x) is a B-spline basis function of degree p
evaluated at x and K = p+ m.

@ The parameter of interest is given by the following collection of matrices

/ /
Bk 623d,k

(N —
V=

’Bn/+11k ﬁ’7/+1dk
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Consequences & Extensions
Multi-Trigger Systems

@ In practice, multiple competing incidents can contribute to trigger in the
follow-up event.

@ To address this we define a multi-trigger system where we consider
Vi,..., Yk as a sequence of identically distributed random fields with

yk:{Yk,X:XEX}, k=1,..., K.
@ Our framework extends to the framework of K trigger events by considering

ay(x) = uli_)r'?/* Pllux=1] Yix>uV---V Ygx > u).

@ This formula simplifies to the original single-trigger case by defining
Ye=min{ Y1y, ..., Yk x}, and hence the theory and methods discussed
earlier readily apply to this context as well.
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-
Consequences & Extensions

Categorical, Ordinal, and Continuous Follow-up Events

@ In real-world applications, the follow-up extreme event may come in
different flavors or categories.

Example

For example, j = 0 may represent no tornado, j = 1, supercell tornado, and
J = 2 a non-supercell tornado.

@ The proposed cascading probability surfaces naturally extend to this context
as follows _
(X)) = lim P(lyx=j| Y > u),
u—y*

where j =0,...,J.
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-
Monte Carlo Simulation Study

Scenarios A

Scenarios Al and A2 (n = 5 000)

—— MC Mean KAN POC Curve === True POC Curve

a(x)
ay(x)

0.0 = T
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-
Monte Carlo Simulation Study

Scenarios A

Scenarios Al and A2 (n = 10 000)

—— MC Mean KAN POC Curve === True POC Curve

A2

a(x)
ay(x)

0.2

0.0 == T
0.0 0.2 0.4 0.6 0.8 1.0
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-
Monte Carlo Simulation Study

Scenarios A

Scenarios Al and A2 (n = 15 000)

—— MC Mean KAN POC Curve === True POC Curve

A2

a(x)
ay(x)

0.2

0.0 = T

T T T T 0.0 —— T
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Real Data lllustration
Applied Rationale and Data Description

Coastal regions are highly vulnerable to tsunamis, with their impacts often
compounded by extreme earthquakes that act as primary triggers.

We now apply the proposed method to quantify the probability of cascade
for tsunami occurrence triggered by extreme earthquakes.

Our analysis uses data from the NCEI/WDS Global Significant Earthquake
Database, provided by the NOAA National Centers for Environmental
Information.

The dataset contains over 5700 significant earthquakes from 2150 B.C. to
present, defined by criteria such as fatalities, damages over $1 million,
Modified Mercalli Intensity (MMI) X or greater, or the earthquake generated
a tsunami.

Each observation includes event date, location, depth, magnitude, MMI,
and socio-economic impacts (casualties, injuries, property damage), with
references and notes on related events like tsunamis and eruptions.
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E—
Real Data lllustration

Implementation

@ We threshold the data at their 95% threshold for fitting the POC surface
and consider the features,

(latitude, longitude, depth).

@ We transform longitude and latitude coordinates to the unit square for
modeling purposes.

@ Finally, we fit a KAN model with three layers, using a sigmoid activation
function at the output.
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E—
Real Data lllustration

Visualization

No Tsunami
Tsunami

180° 120°W 60°W 0° 60°E 120°E 180°

Figure: Point pattern of earthquakes (red) and associated tsunami occurrences (blue).
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Real Data Illustration
POC Surface—Depth: Percentile 5

180° 120°W 60°W 0° 60°E 120°E 180°

0.4 0.6
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Real Data lllustration
POC Surface—Depth: Percentile 85

== 5

180° 120°W 60°W 0° 60°E 120°E 180°

0.4 0.6
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Generative Transformer-Based Approaches for Cascading Extremes
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E—
Rationale

Cascades are Natural Models for Generative Extremes

@ Chains of extreme events and cascades offer a natural starting point for
thinking about generative extremes.

NVIDIA | 3.6% TSMC | 3.1% AMD | 4.2% -
Earhauake (M 78) Toumami (Waveheight o) S
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N
Context

Attention is All you Need

@ The starting point for the construction of our first generative Al approach
for extreme events is based on notions of multi-headed attention as well as
of transformers, as introduced in Vaswani et al (2017); for an introduction
see Bishop & Bishop (2023; §12).

[ | ] [swamJ [acrossJ [ the J [river] [ to ] [ get ] [ to ] [ the J [other] [bank]

{ | ] [swam) [across] [ the ] [river] [ to ] [ get ] [ to ] [ the J [other] [bank]

Figure 12.1 Schematic illustration of attention in which the interpretation of the word ‘bank’ is influenced by the
words ‘river’ and ‘swam’, with the thickness of each line being indicative of the strength of its influence.
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N
Context

@ Whereas the unit of analysis in standard transformers is a sequence of
tokens, in our EVT-based transformer is a sequence of extreme events.

S

@ By analogy with language models, where the meaning of a token depends
on its context, the interpretation of an extreme event similarly depends on
the surrounding events.

Example

The sequence of extreme stock losses shown in the above figure is more
indicative of a tech-specific cascade than of a broader macro-financial shock.

The proposed model is conceived to learn from data both:
@ the most probable continuations of extreme event sequences;

@ the probabilities of subsequent extremes.
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Closing Remarks

Summary

@ This talk presented a novel statistical framework to tackle the rising
concern of cascading extreme events—Ilike tsunamis followed by earthquakes
or heatwaves sparking wildfires, which in turn lead to further losses.

@ The proposed approach aims to offer a novel outlook into triggering
extremal events and their domino effects.

@ KANE, a neural model based on Kolmogorov's superposition theorem, was
developed to learn about the proposed POC surface.

@ In addition, | offered some remarks on how cascades offer a natural starting
point for thinking about generative extremes.

@ Whereas the unit of analysis in standard transformers is a sequence of
tokens, in our EVT-based transformer is a sequence of extreme events.
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Thank you!

Thank youl
Questions?

Miguel.deCarvalho@ed.ac.uk

Cascading Extremes 30/42



E—
Other Directions

Future Work, |

@ In practice, either the follow-up or the trigger event may be
functional in the sense of FDA (Functional Data Analysis)
(Horvath and Kokoszka, 2012; Kokoszka, 2017).

@ For example, we may observe /,x = 1 for x over a S
continuum rather than over a point x € RY.

@ As a concrete instance of this, in the earthquake data
application, the follow-up event could represent the full
region S C R? affected by the tsunami, in which case
lux=1forallxeS.

@ While our theory also accommodates this framework,
further investigation is needed to incorporate such
functional events into the inferences in a fully FDA-aligned
fashion.
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E—
Other Directions

Future Work, Il

@ The proposed approach may set the stage for extremal
chains of random length (k < d), and also factoring in the
role of the chain’s pathways.

@ TDMs (Tail Dependence Matrices) (Embrechts et al.,
2016) can perhaps be used govern a Markovian pathway of
the extremal cascade, with the order of events dictated by a
random permutation of {1,..., k} based on TDMs'
transition probabilities between extremal events.

@ This will allow for modelling and learning from the data the
length or size of the extremal cascade (k) as well as the
distribution of the pathway taken by it (say, 4 -1 —2 — 3
or3— 2 — 1 — 4 as two examples of realizations of the
chain of extremes), where trigger can vary (e.g., Y4 or Y3).

Ae AP - k™
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Supporting Information
Model Checking

Figure: QQ boxplot of Dunn—=Smyth residuals.
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QQ Boxplot

Rodu and Kafadar (2022; Journal of Computational and Graphical Statistics)

a) boxplot b) g-g plot ¢) g—-g boxplot

0-

logged normalized expression
logged nermalized expression

logged normalized expression
@ 3>

specimen
5= 5-

* autsm

3 L]
4 control

. L4 L} [

autism control -2 0 ) autism control
specimen thearetical specimen

Figure 1. A comparison of the boxplot, g-q plot, and g-q boxplot highlights advantages of the q-q boxplot. Logged, normalized gene expression data for a

patient with autism (left) and a “control” patient (right) as displayed by (a) boxplot; (b) g-q plot referenced to the normal distribution®; and (c) q-q boxplot

referenced to the normal distribution. Data come from a random sample of the observations obtained from the Expression Atlas (Papatheodorou et al. 2019)
D ebiacuk/g: i /E-GEOD-30573/Results).
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Randomized Quantile Residuals
Dun and Smyth (1996; Journal of Computational and Graphical Statistics)

3. RANDOMIZED QUANTILE RESIDUALS

Let #(yi 1, ) be the cumulative distribution function of Pk, 6). If ' is continuous,
then the F(y: ) are uniformly distributed on the unit interval. In this case, the
quantile residuals are defined by

i =9 (Flyii fi,8)),
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N
Randomized Quantile Residuals

Scenarios B

Scenarios B1 and B2 (n = 5 000)
)

MC Mean KAN POC Surface (B1

True POC Surface (B1)
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0.8+ 0.8+
0.6 0.6
o o
x x
0.4 0.4+
0.2 0.2
0.0 T T T T 0.0 T T T T
0. 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 06 08 10
X1 X1
MC Mean KAN POC Surface (B2) True POC Surface (B2)
1.0 1.0
0.8 0.8+
0.6 0.6
< <
0.4 0.4+
0.2+
T T 0.0 T
06 08 10 0.0 02 04 06 08 10
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N
Randomized Quantile Residuals

Scenarios B

Scenarios B1 and B2 (n = 10 000)

MC Mean KAN POC Surface (B1)

True POC Surface (B1)

10
0.8+ 0.8+
0.6 0.6
o o
x x
0.4 0.4+
0.2 0.2
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 06 08 10
X1 X1
MC Mean KAN POC Surface (B2) True POC Surface (B2)
1.0 1.0
0.8 ‘ 0.8+
0.6 0.6
< <
0.4 0.4
024 024
T T 0.0 T
06 08 10 00 02 04 06 08 10

Cascading Extremes

37/42



N
Randomized Quantile Residuals

Scenarios B

Scenarios B1 and B2 (n = 15 000)

MC Mean KAN POC Surface (B1)

True POC Surface (B1)
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N
Randomized Quantile Residuals

Scenarios C

Scenario C (n = 5 000)

MC Hean KAN POC Surface j=1 True POC Surfacej=1 o
as
x1 E xt
MC Hean KAN POC Surface j=2 o
a6
x :
MC Hean KAN POC Surface j=3 .
a6
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N
Randomized Quantile Residuals

Scenarios C

Scenario C (n = 10 000)
MC Mean KAN POC Surface j=1 Tue POC Surfacej=1 N
as
x1 h X1
MC Mean KAN POC Surface j=2 N
as
X1 :
MC Mean kAN POC Surface j=3 N
a
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N
Randomized Quantile Residuals

Scenarios C

Scenario C (n = 15 000)
MC Mean KAN POC Surface j=1 Tue POC Surfacej=1 N
as
x1 h X1
MC Mean KAN POC Surface j=2 N
as
X1 :
MC Mean kAN POC Surface j=3 N
a
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-
Universal Approximation Theorem

Theorem (Universal Approximation Theorem)

Suppose f is a continuous function on a compact space X C RY and o is not a

polynomial. Then, for any € > 0, there exists a one-hidden layer neural network
fo such that

sup |f(x) — fo(x)] < €.
xeX

Notation: Here fy : R? — R is a one-hidden layer feedforward neural network
composed of K neurons

K
fo(x) = b@ + 3" wPo(w, x) + b)),
k=1

where
6 := (b} U {w), W b} €@ =R x (RY x R x R)X,

and where (-, -) is a scalar product on R, and o : R — R is a non-linear

activation function.
M. ¢ alho
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