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Angular measure modeling



Multivariate tail modeling and angular measure
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Main goal: “model” ® via a generative method
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Empirical data from ¢

> Xi,...,X,iid. distributed as X
» Empirical Pareto(1) standardization:

d
N 1 ~ 1
0= (hmy) o =

Jj=1

» Extracting “large angles”: fix some large r > 0 (here r = n/k with k € {1,...,n})

f Ri=|Vi>r, W =RV

Wi, ..., Wk, with K=>"" I{R; > r}, considered as ®-distributed
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1

Transform W; to coordinates W in an orthonormal basis of Ay_1 ]
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Aitchison simplex: the CLR space
Assumption: concentration on the open simplex
®(AY_;) =1 where A ; ={x € (0,1)9: |x|; =1}

& J. Aitchison (1926-2016) inner product space structure on AY_; via the isometry

d
Wi
Ir:weAy ; —cl =|log——~—— eH={xeR?: (x,15) =0
clr:w 91+ clr(w) (og (H‘-j:l W,')l/d>._ {x (x,14) }
1 J*l

with inverse being the (restriction to H) of the softmax function
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T Orthonormal basis of Ag_; given by {e} = softmax(e;) : j = 1,.
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Wasserstein—Aitchison Generative Adversarial Networks

L WGAN algorithm on the coordinates w; = ((clr(w,-),ej>)j.l;11
Real
coordinates
J/ s Gradient 1
Random ! 1 '
G t o i I
Gaussian | oo Lol Critic D, Y A "c_ie_s_c?n_t_ o
A GQ(Z) ’
noise z - J/ ,
. Earth Mover "l
e ~==~-|.Distance W;
! Gradient 'l _Penalty
! descent ! -'
» the GAME:

mein mmz/ax{/X D, (x) dP(x) —/ZDw(GO(Z)) dPZ(Z)}a



Penalty term

AN Ap>0

1 & 1 & 14
A ; |V Do (W)]2 — 1)% + Pl ;softmax( VGy(2) —

Lipschitz constraint marginal constraints



Change of norm

> Oq,...,0, sample from ® on Ay_;

» Estimator for an arbitrary norm || - ||:

n
X
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Multivariate Generalized Pareto modeling



Going beyond the dependence structure
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Going beyond the dependence structure
X £u)

u, = upper endpoint of X

U3

[ X | X £ u, as u — uy ]

Assumption: Generalized Pareto limit of marginal tails

For every j € {1,...,d}, there exists £ € R and a function o;j(-) : (—o0, uyj) — (0, 00)

. Xi—u _1/5.
Yy > 0, lim P<J >y X->u>:1+§-y T
2, oy 771 S

where a; = max(a,0) for a € R; if {§ = 0, the limit is to be understood as exp(—y).



Regular variation + GP assumptions =— MGPD convergence
[Lhaut et al., 2025, Proposition 1]

Proposition (Convergence to a Multivariate Generalized Pareto distribution)

Under the previous assumptions, along the curve

u:te(l,00)— u(t)= (/:j—l(l = 1/t))7_1

we have ( .
— u(t) L Ys -1
X ,

ey | X A S

where Y is Multivariate Pareto distributed, i.e.,

t — 00,

Y£(vOo|Ye £1),

with Y unit-Pareto distributed and ® ~ ® independent.




8 Sampling from X | X £ u:
Input: data Xi,..., X,, integer k € [1, n], ML estimates (£, &) of marginal GP

parameters
WA-GAN
If [Y]oo >1

[Forjzl,...,d, do:}

\ Yi>1
1 A.
v o1

Gj=u; +0j-7
&

Y ~ Pareto(1)

IfY;

IN

[Gj = X[nfk/YJ-]\/l:n,j]

Output: G = (GJ-)j‘.jl:1 sample from X | X £ u



Numerical results
Simulated data: logistic model
Real data: daily returns of industry portfolios
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Performance measures
% Dependence score:

99
E5(k) = 7oy douc{i,..dy |1 — 57| ke{2,3,...}
() ‘J‘ k J

based on the extremal coefficients

eJ:d./A \/ w; do(w) € [1,|J]

-1jed

|#a Extremes score: generalized Fréchet Inception Distance (FID) score

ng > nt

WE(X§. X]) = inf (1 1oy T TN - (XD




Methodology and computations

Architectures: fully connected MLP with leaky ReLU activation function

& &

Hyperparameter search: random search among 2000 possible models (batch size,
dimension of the latent space, penalty parameters, number of layers, ...)

&

Comparison with existing methods: we compare our performance to (own im-
plementation of) Heavy—Tailed GAN [Girard et al., 2024] and Generalized Pareto
GAN [Li et al., 2024]

Software: training on PyTorch, validation and testing on R

& &

Hardware: Lemaitre4 and NIC5 computer clusters available from the Consortium
of Equipements de Calcul Intensif !

Mttps://www.ceci-hpc.be/clusters.html
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X has Gumbel copula such that Kendall's correlation equals 7 € {1/4,1/2,3/4}

Results

and Pareto margins with parameter & = 2 in dimension d € {10,20,50}

Nirain = 10000, nyy = 5000, neest = 20000 and k = /nyain for each algorithm

Dependence score

Extremes score

T Model d=10 d=20 d=50|d=10 d=20 d=50
WA-GAN 0.0103 0.0074 0.0054 | 67.311 62.905 42.825
T = % HTGAN 0.0146  0.0185 0.0199 | 1479.9 3106.7 1170.7
GPGAN 0.0262 0.0321 0.0326 | 66.663 65.429  52.133
WA-GAN 0.0176 0.0207 0.0097 | 66.734 52.832 32.468
T = % HTGAN 0.0247 0.0179 0.0126 | 2725.3 14479 2367.4
GPGAN 0.0511  0.0671  0.0672 | 67.841  55.308  46.996
WA-GAN 0.0208 0.0266 0.0158 | 59.548 44.602 31.808
T= % HTGAN 0.0284 0.0338  0.055 891.62 61244  440.45
GPGAN 0.0497  0.0726  0.0818 | 59.919 53.758  45.541




Test

[llustration: extremal coefficients

&
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Data description

B8 Value-averaged daily returns of d = 30 industry portfolios compiled and posted as
part of the Kenneth French Data Library 2

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Results

method ‘ dependence extremes
WA-GAN 0.018 11.93
HTGAN 0.026 /
GPGAN 0.043 8.46
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WA-GAN method to sample from angular measures w.r.t. Lj-norm
Simple post-processing allows for arbitrary norm
Captures the dependence structure in moderately high dimensions

May be used to sample from the associated MGPD if the margins are supposed to
be in the DoA of univariate GPDs
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WA-GAN method to sample from angular measures w.r.t. Lj-norm
Simple post-processing allows for arbitrary norm
Captures the dependence structure in moderately high dimensions

May be used to sample from the associated MGPD if the margins are supposed to
be in the DoA of univariate GPDs

No uncertainty quantification but can be done via “bootstrap”

Many other architectures possible for the networks, some of which may be more
adapted to particular data types



Thank you!

¥ stephane.lhaut@uclouvain.be

; enerqhve,k’l : J_\‘: @ = Stéphane Lhaut

r@ for Extremg E\arenl‘F
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