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Multivariate tail modeling and angular measure

X ∈ Rd V =
(

1
1−Fj (Xj )

)d
j=1

Pareto(1) margins

limt→∞ t P
(
t−1V ∈ B

)
= ν(B)

Regular variation

limt→∞ P (W ∈ A | R ≥ t) = Φ(A)

R = |V |1 W = R−1V

Main goal: “model” Φ via a generative method
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Empirical data from Φ

▶ X1, . . . ,Xn i.i.d. distributed as X

▶ Empirical Pareto(1) standardization:

V̂i =

(
1

1− F̂j(Xij)

)d

j=1

, F̂j(t) =
1

n + 1

n∑
i=1

I{Xij ≤ t}

▶ Extracting “large angles”: fix some large r > 0 (here r = n/k with k ∈ {1, . . . , n})

If Ri = |V̂i |1 ≥ r , Wi = R−1
i V̂i

W1, . . . ,WK , with K =
∑n

i=1 I{Ri ≥ r}, considered as Φ-distributed
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Data transformation to linear space
Two facts will hamper the learning process:

▶ Wi take values in the simplex ∆d−1 = {x ∈ [0, 1]d : |x |1 = 1}

▶ K
L
≈ Bin(n, k/n)

Transform Wi to coordinates W ∗
i in an orthonormal basis of ∆d−1

−→
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Aitchison simplex: the CLR space

Assumption: concentration on the open simplex

Φ(∆o
d−1) = 1 where ∆o

d−1 = {x ∈ (0, 1)d : |x |1 = 1}

� J. Aitchison (1926–2016) inner product space structure on ∆o
d−1 via the isometry

clr : w ∈ ∆o
d−1 7→ clr(w) =

(
log

wj

(
∏d

i=1 wi )1/d

)d

j=1

∈ H = {x ∈ Rd : ⟨x , 1d⟩ = 0}

with inverse being the (restriction to H) of the softmax function
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Aitchison simplex: ON basis

> Orthonormal basis of ∆o
d−1 given by {e∗

j = softmax(ej) : j = 1, . . . , d − 1} with

ej =

√
j

j + 1

j−1, . . . , j−1︸ ︷︷ ︸
j times

,−1, 0 . . . , 0

 ∈ H

+ w ∈ ∆o
d−1 is decomposed as

w =
d−1⊕
j=1

⟨w , e∗
j ⟩A e∗

j =
d−1⊕
j=1

⟨clr(w), ej⟩ e∗
j
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Wasserstein–Aitchison Generative Adversarial Networks
§ WGAN algorithm on the coordinates w∗

i = (⟨clr(wi ), ej⟩)d−1
j=1

Random
Gaussian
noise z

Generator
Gθ(z)

Critic Dw

Earth Mover
Distance W1

+ Penalty

Real
coordinates

Gradient
descent

Gradient
descent

▶ the GAME:

min
θ

max
w

{∫
X
Dw (x) dP(x)−

∫
Z
Dw (Gθ(z)) dPZ (z)

}
,



Penalty term

© λ, ρ > 0

λ
1

m

m∑
i=1

(|∇w∗Dw (ŵ∗
i )|2 − 1)2︸ ︷︷ ︸

Lipschitz constraint

+ ρ

∣∣∣∣∣ 1m
m∑
i=1

softmax(VGθ(zi ))−
1d
d

∣∣∣∣∣︸ ︷︷ ︸
marginal constraints



Change of norm

▶ Θ1, . . . ,Θn sample from Φ on ∆d−1

▶ Estimator for an arbitrary norm ∥ · ∥:
n∑

i=1

Λiδ Θi
∥Θi∥

, Λi =
∥Θi∥∑n
i=1 ∥Θi∥
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Going beyond the dependence structure

u∗ = upper endpoint of X

X | X ≰ u, as u → u∗

Assumption: Generalized Pareto limit of marginal tails

For every j ∈ {1, . . . , d}, there exists ξj ∈ R and a function σj(·) : (−∞, u∗j) → (0,∞)

∀y > 0, lim
u↗u∗j

P

(
Xj − u

σj(u)
> y

∣∣Xj > u

)
= (1 + ξjy)

−1/ξj
+ ,

where a+
def
= max(a, 0) for a ∈ R; if ξj = 0, the limit is to be understood as exp(−y).
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Regular variation + GP assumptions =⇒ MGPD convergence
[Lhaut et al., 2025, Proposition 1]

Proposition (Convergence to a Multivariate Generalized Pareto distribution)

Under the previous assumptions, along the curve

u : t ∈ (1,∞) 7→ u(t) =
(
F−1
j (1− 1/t)

)d
j=1

we have
X − u(t)
σ(u(t))

| X ≰ u(t) L−→ Y ξ − 1

ξ
, t → ∞,

where Y is Multivariate Pareto distributed, i.e.,

Y L
= (YΘ | YΘ ≰ 1),

with Y unit-Pareto distributed and Θ ∼ Φ independent.



§ Sampling from X | X ≰ u:
Input: data X1, . . . ,Xn, integer k ∈ [1, n], ML estimates (ξ̂, σ̂) of marginal GP
parameters

Θ ∼ Φ using
WA-GAN

Y ∼ Pareto(1)

Y = YΘ

For j = 1, . . . , d , do:

Gj = X[n−k/Yj ]∨1:n,j

Gj = uj + σ̂j
Y

ξ̂j
j −1

ξ̂j

If |Y |∞ > 1

If Yj ≤ 1

If Yj > 1

Output: G = (Gj)
d
j=1 sample from X | X ≰ u
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Performance measures

® Dependence score:

Eθ(k) =
1

(dk)

∑
J⊆{1,...,d}

|J|=k

∣∣∣∣1− θGJ
θTJ

∣∣∣∣ , k ∈ {2, 3, . . .}

based on the extremal coefficients

θJ = d ·
∫
∆d−1

∨
j∈J

wj dΦ(w) ∈ [1, |J|]

� Extremes score: generalized Fréchet Inception Distance (FID) score

W 2
2 (X

G
u ,X T

u ) = inf
π∈Π

(
1nG
nG

,
1nT
nT

)∑nG
i=1

∑nT
j=1 ∥(XG

u )i − (X T
u )j∥22 πij
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� Extremes score: generalized Fréchet Inception Distance (FID) score

W 2
2 (X

G
u ,X T

u ) = inf
π∈Π

(
1nG
nG

,
1nT
nT

)∑nG
i=1

∑nT
j=1 ∥(XG

u )i − (X T
u )j∥22 πij



Methodology and computations

� Architectures: fully connected MLP with leaky ReLU activation function

� Hyperparameter search: random search among 2000 possible models (batch size,
dimension of the latent space, penalty parameters, number of layers, ...)

� Comparison with existing methods: we compare our performance to (own im-
plementation of) Heavy–Tailed GAN [Girard et al., 2024] and Generalized Pareto
GAN [Li et al., 2024]

� Software: training on PyTorch, validation and testing on R

� Hardware: Lemaitre4 and NIC5 computer clusters available from the Consortium
of Équipements de Calcul Intensif 1

1https://www.ceci-hpc.be/clusters.html

https://www.ceci-hpc.be/clusters.html
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Results

 X has Gumbel copula such that Kendall’s correlation equals τ ∈ {1/4, 1/2, 3/4}
and Pareto margins with parameter α = 2 in dimension d ∈ {10, 20, 50}

 ntrain = 10 000, nval = 5000, ntest = 20 000 and k =
√
ntrain for each algorithm
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Illustration: extremal coefficients
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Illustration: generated extremes
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Data description

! Value-averaged daily returns of d = 30 industry portfolios compiled and posted as
part of the Kenneth French Data Library 2

! Between 1950 and 2015 (n = 16 694). We take ntrain = 7000, nval = 3000, ntest =
6694 and k =

√
ntrain

� Extreme losses → data multiplied by −1
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2https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Marginal parameters of the GPD
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Results

method dependence extremes

WA-GAN 0.018 11.93
HTGAN 0.026 /
GPGAN 0.043 8.46
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✓ WA-GAN method to sample from angular measures w.r.t. L1-norm

✓ Simple post-processing allows for arbitrary norm

✓ Captures the dependence structure in moderately high dimensions

✓ May be used to sample from the associated MGPD if the margins are supposed to
be in the DoA of univariate GPDs

3 No uncertainty quantification but can be done via “bootstrap”

3 Many other architectures possible for the networks, some of which may be more
adapted to particular data types
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adapted to particular data types



Thank you!

� stephane.lhaut@uclouvain.be
� � Stéphane Lhaut



References

Girard, S., Gobet, E., and Pachebat, J. (2024).
Deep generative modeling of multivariate dependent extremes.
HAL preprint, hal-04700084v2, pages 1–35.

Lhaut, S., Rootzén, H., and Segers, J. (2025).
Wasserstein-Aitchison GAN for angular measures of multivariate extremes.

Li, J., Li, D., Li, P., and Samorodnitsky, G. (2024).
Generalized Pareto GAN: Generating extremes of distributions.
In Proceedings of the 2024 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE.


	Angular measure modeling
	Multivariate Generalized Pareto modeling
	Numerical results
	Simulated data: logistic model
	Real data: daily returns of industry portfolios

	Conclusions and extensions

