Wasserstein–Aitchison GAN for angular measures of multivariate extremes

Stéphane Lhaut¹ Holger Rootzén² Johan Segers^{1,3}

¹UCLouvain, LIDAM, Institute of Statistics, Biostatistics and Actuarial Sciences ²Chalmers University of Technology, Department of Mathematical Sciences ³KU Leuven, Department of Mathematics

Workshop on Generative AI Modelling for Extreme Events Edinburgh, June 13–14 2025

Outline

Angular measure modeling

Multivariate Generalized Pareto modeling

Numerical results

Simulated data: logistic model

Real data: daily returns of industry portfolios

Conclusions and extensions

Angular measure modeling

Multivariate Generalized Pareto modeling

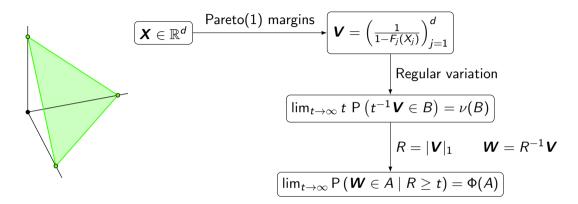
Numerical results

Simulated data: logistic mode

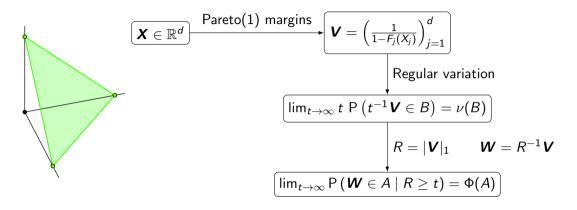
Real data: daily returns of industry portfolios

Conclusions and extensions

Multivariate tail modeling and angular measure



Multivariate tail modeling and angular measure



Main goal: "model" Φ via a generative method

Empirical data from Φ

 $ightharpoonup X_1, \ldots, X_n$ i.i.d. distributed as X

Empirical data from Φ

- \triangleright X_1, \ldots, X_n i.i.d. distributed as X
- ► Empirical Pareto(1) standardization:

$$\widehat{m{V}}_i = \left(rac{1}{1-\widehat{F}_j(X_{ij})}
ight)_{j=1}^d, \qquad \widehat{F}_j(t) = rac{1}{n+1}\sum_{i=1}^n \mathbb{I}\{X_{ij} \leq t\}$$

Empirical data from Φ

- \triangleright X_1, \ldots, X_n i.i.d. distributed as X
- ► Empirical Pareto(1) standardization:

$$\widehat{oldsymbol{V}}_i = \left(rac{1}{1-\widehat{F}_j(X_{ij})}
ight)_{i=1}^a, \qquad \widehat{F}_j(t) = rac{1}{n+1}\sum_{i=1}^n \mathbb{I}\{X_{ij} \leq t\}$$

Extracting "large angles": fix some large r > 0 (here r = n/k with $k \in \{1, ..., n\}$)

If
$$R_i = |\widehat{\boldsymbol{V}}_i|_1 \ge r$$
, $\boldsymbol{W}_i = R_i^{-1} \widehat{\boldsymbol{V}}_i$

 W_1, \ldots, W_K , with $K = \sum_{i=1}^n \mathbb{I}\{R_i \ge r\}$, considered as Φ-distributed

Data transformation to linear space

Two facts will hamper the learning process:

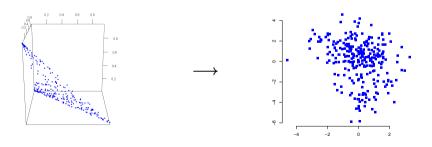
- ▶ W_i take values in the simplex $\Delta_{d-1} = \{ \mathbf{x} \in [0,1]^d : |\mathbf{x}|_1 = 1 \}$
- $ightharpoonup K \stackrel{\mathcal{L}}{\approx} Bin(n, k/n)$

Data transformation to linear space

Two facts will hamper the learning process:

- $lacksymbol{\mathcal{W}}_i$ take values in the simplex $\Delta_{d-1} = \{ oldsymbol{x} \in [0,1]^d : |oldsymbol{x}|_1 = 1 \}$
- $ightharpoonup K \stackrel{\mathcal{L}}{\approx} Bin(n, k/n)$

Transform W_i to coordinates W_i^* in an orthonormal basis of Δ_{d-1}



Aitchison simplex: the CLR space

Assumption: concentration on the open simplex

$$\Phi(\Delta_{d-1}^{ ext{o}})=1$$
 where $\Delta_{d-1}^{ ext{o}}=\{\pmb{x}\in(0,1)^d:|\pmb{x}|_1=1\}$

Aitchison simplex: the CLR space

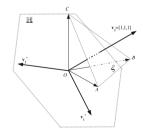
Assumption: concentration on the open simplex

$$\Phi(\Delta_{d-1}^{\mathrm{o}})=1$$
 where $\Delta_{d-1}^{\mathrm{o}}=\{oldsymbol{x}\in(0,1)^d:|oldsymbol{x}|_1=1\}$

 \blacksquare J. Aitchison (1926–2016) inner product space structure on Δ_{d-1}^{o} via the isometry

$$\mathsf{clr}: oldsymbol{w} \in \Delta_{d-1}^{\mathrm{o}} \mapsto \mathsf{clr}(oldsymbol{w}) = \left(\log rac{w_j}{(\prod_{i=1}^d w_i)^{1/d}}
ight)_{i=1}^d \in \mathbb{H} = \{oldsymbol{x} \in \mathbb{R}^d: \langle oldsymbol{x}, oldsymbol{1}_d
angle = 0\}$$

with inverse being the (restriction to \mathbb{H}) of the softmax function



Aitchison simplex: ON basis

ullet Orthonormal basis of $\Delta_{d-1}^{\mathrm{o}}$ given by $\{m{e}_j^* = \operatorname{softmax}(m{e}_j): j=1,\ldots,d-1\}$ with

$$oldsymbol{e}_j = \sqrt{rac{j}{j+1}} \left(\underbrace{j^{-1}, \ldots, j^{-1}}_{i ext{ times}}, -1, 0 \ldots, 0
ight) \in \mathbb{H}$$

Aitchison simplex: ON basis

Orthonormal basis of Δ_{d-1}^{o} given by $\{ \boldsymbol{e}_{j}^{*} = \operatorname{softmax}(\boldsymbol{e}_{j}) : j = 1, \ldots, d-1 \}$ with

$$oldsymbol{e}_j = \sqrt{rac{j}{j+1}} \left(\underbrace{j^{-1}, \ldots, j^{-1}}_{j ext{ times}}, -1, 0 \ldots, 0
ight) \in \mathbb{H}$$

 $oldsymbol{\omega} \quad oldsymbol{\omega} \in \Delta_{d-1}^{\mathrm{o}} \text{ is decomposed as }$

$$oldsymbol{w} = igoplus_{j=1}^{d-1} \langle oldsymbol{w}, oldsymbol{e}_j^*
angle_{oldsymbol{A}} oldsymbol{e}_j^* = igoplus_{j=1}^{d-1} \langle \mathsf{clr}(oldsymbol{w}), oldsymbol{e}_j
angle \, oldsymbol{e}_j^*$$

Wasserstein-Aitchison Generative Adversarial Networks

oxdots WGAN algorithm on the coordinates $oldsymbol{w}_i^* = (\langle \mathsf{clr}(oldsymbol{w}_i), oldsymbol{e}_i
angle)_{i=1}^{d-1}$



► the GAME:

$$\min_{\theta} \max_{w} \left\{ \int_{\mathcal{X}} D_{w}(x) \, \mathrm{dP}(x) - \int_{\mathcal{Z}} D_{w} \left(G_{\theta}(z) \right) \, \mathrm{dP}_{Z}(z) \right\},$$

Penalty term

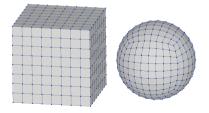
 $\lambda, \rho > 0$

$$\underbrace{\lambda \frac{1}{m} \sum_{i=1}^{m} (|\nabla_{\boldsymbol{w}^*} D_{w}(\widehat{\boldsymbol{w}}_{i}^*)|_{2} - 1)^{2}}_{\text{Lipschitz constraint}} + \underbrace{\rho \left| \frac{1}{m} \sum_{i=1}^{m} \operatorname{softmax}(VG_{\theta}(\boldsymbol{z}_{i})) - \frac{\mathbf{1}_{d}}{d} \right|}_{\text{marginal constraints}}$$

Change of norm

- $lackbox{\Theta}_1,\ldots,lackbox{\Theta}_n$ sample from Φ on Δ_{d-1}
- ► Estimator for an arbitrary norm || · ||:

$$\sum_{i=1}^{n} \Lambda_{i} \delta_{\frac{\mathbf{\Theta}_{i}}{\|\mathbf{\Theta}_{i}\|}}, \qquad \Lambda_{i} = \frac{\|\mathbf{\Theta}_{i}\|}{\sum_{i=1}^{n} \|\mathbf{\Theta}_{i}\|}$$



Angular measure modeling

Multivariate Generalized Pareto modeling

Numerical results

Simulated data: logistic mode

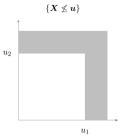
Real data: daily returns of industry portfolios

Conclusions and extensions

Going beyond the dependence structure

 $u_* = \text{upper endpoint of } X$

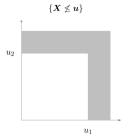
 $m{X} \mid m{X}
ot \leq m{u}, \quad \text{as } m{u} o m{u}_*$



Going beyond the dependence structure

$$u_* = \mathsf{upper} \; \mathsf{endpoint} \; \mathsf{of} \; \boldsymbol{X}$$

$$m{X} \mid m{X} \nleq m{u}, \qquad ext{as } m{u}
ightarrow m{u}_*$$



Assumption: Generalized Pareto limit of marginal tails

For every $j \in \{1, \ldots, d\}$, there exists $\xi_i \in \mathbb{R}$ and a function $\sigma_i(\cdot) : (-\infty, u_{*i}) \to (0, \infty)$

$$\forall y > 0, \qquad \lim_{u \nearrow u_{*i}} P\left(\frac{X_j - u}{\sigma_i(u)} > y \mid X_j > u\right) = (1 + \xi_j y)_+^{-1/\xi_j},$$

where $a_+ \stackrel{\text{def}}{=} \max(a,0)$ for $a \in \mathbb{R}$; if $\xi_j = 0$, the limit is to be understood as $\exp(-y)$.

Regular variation + GP assumptions \implies MGPD convergence [Lhaut et al., 2025, Proposition 1]

Proposition (Convergence to a Multivariate Generalized Pareto distribution)

Under the previous assumptions, along the curve

$$oldsymbol{u}:t\in(1,\infty)\mapstooldsymbol{u}(t)=\left(F_j^{-1}(1-1/t)
ight)_{j=1}^d$$

we have

$$rac{oldsymbol{\mathcal{X}} - oldsymbol{u}(t)}{\sigma(oldsymbol{u}(t))} \mid oldsymbol{\mathcal{X}} \nleq oldsymbol{u}(t) \xrightarrow{\mathcal{L}} rac{oldsymbol{Y}^{oldsymbol{\xi}} - 1}{oldsymbol{\xi}}, \qquad t o \infty,$$

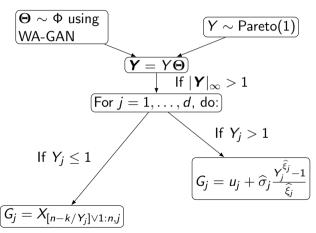
where Y is Multivariate Pareto distributed, i.e.,

$$oldsymbol{Y} \stackrel{\mathcal{L}}{=} (Yoldsymbol{\Theta} \mid Yoldsymbol{\Theta}
ot \leq 1),$$

with Y unit-Pareto distributed and $\Theta \sim \Phi$ independent.

 \square Sampling from $X \mid X \nleq u$:

Input: data X_1, \ldots, X_n , integer $k \in [1, n]$, ML estimates $(\widehat{\xi}, \widehat{\sigma})$ of marginal GP parameters



Output: $G = (G_j)_{i=1}^d$ sample from $X \mid X \nleq u$

Angular measure modeling

Multivariate Generalized Pareto modeling

Numerical results

Simulated data: logistic model

Real data: daily returns of industry portfolios

Conclusions and extensions

Performance measures

% Dependence score:

$$E_{\overline{\theta}}(k) = rac{1}{{d \choose k}} \sum_{\substack{J \subseteq \{1,\ldots,d\} \ |J|=k}} \left| 1 - rac{ heta_J^{\mathcal{G}}}{ heta_J^{\mathcal{T}}}
ight|, \qquad k \in \{2,3,\ldots\}$$

based on the extremal coefficients

$$heta_J = d \cdot \int_{\Delta_{d-1}} \bigvee_{j \in J} w_j \; \mathrm{d}\Phi(oldsymbol{w}) \, \in [1, |J|]$$

Performance measures

% Dependence score:

$$E_{\overline{ heta}}(k) = rac{1}{{d \choose k}} \sum_{\substack{J \subseteq \{1,\ldots,d\} \ |J|=k}} \left| 1 - rac{ heta_J^{\mathcal{G}}}{ heta_J^{\mathcal{T}}}
ight|, \qquad k \in \{2,3,\ldots\}$$

based on the extremal coefficients

$$heta_J = d \cdot \int_{\Delta_{d-1}} \bigvee_{i \in I} w_i \; \mathrm{d}\Phi(oldsymbol{w}) \, \in [1, |J|]$$

Extremes score: generalized Fréchet Inception Distance (FID) score

$$W_2^2(m{X}_{m{u}}^{\mathcal{G}},m{X}_{m{u}}^{\mathcal{T}}) = \inf_{\pi \in \Pi\left(rac{\mathbf{1}_{n_{\mathcal{G}}}}{n_{\mathcal{G}}},rac{\mathbf{1}_{n_{\mathcal{T}}}}{n_{\mathcal{T}}}
ight)} \sum_{i=1}^{n_{\mathcal{G}}} \sum_{j=1}^{n_{\mathcal{T}}} \|(m{X}_{m{u}}^{\mathcal{G}})_i - (m{X}_{m{u}}^{\mathcal{T}})_j\|_2^2 \pi_{ij}$$

Methodology and computations

- Architectures: fully connected MLP with leaky ReLU activation function
- Hyperparameter search: random search among 2000 possible models (batch size, dimension of the latent space, penalty parameters, number of layers, ...)
- Comparison with existing methods: we compare our performance to (own implementation of) Heavy–Tailed GAN [Girard et al., 2024] and Generalized Pareto GAN [Li et al., 2024]
- Software: training on PyTorch, validation and testing on R
- A Hardware: Lemaitre4 and NIC5 computer clusters available from the Consortium of Équipements de Calcul Intensif ¹

¹https://www.ceci-hpc.be/clusters.html

Angular measure modeling

Multivariate Generalized Pareto modeling

Numerical results

Simulated data: logistic model

Real data: daily returns of industry portfolios

Conclusions and extensions

X has Gumbel copula such that Kendall's correlation equals $\tau \in \{1/4, 1/2, 3/4\}$ and Pareto margins with parameter $\alpha = 2$ in dimension $d \in \{10, 20, 50\}$

 \blacksquare X has Gumbel copula such that Kendall's correlation equals $\tau \in \{1/4, 1/2, 3/4\}$ and Pareto margins with parameter $\alpha = 2$ in dimension $d \in \{10, 20, 50\}$

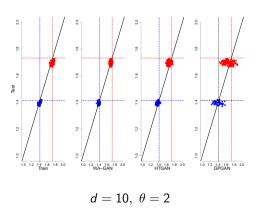
 $n_{\text{train}} = 10\,000, n_{\text{val}} = 5\,000, n_{\text{test}} = 20\,000 \text{ and } k = \sqrt{n_{\text{train}}} \text{ for each algorithm}$

 \blacksquare X has Gumbel copula such that Kendall's correlation equals $\tau \in \{1/4, 1/2, 3/4\}$ and Pareto margins with parameter $\alpha = 2$ in dimension $d \in \{10, 20, 50\}$

 $n_{\text{train}} = 10\,000, n_{\text{val}} = 5\,000, n_{\text{test}} = 20\,000 \text{ and } k = \sqrt{n_{\text{train}}} \text{ for each algorithm}$

		Dependence score			Extremes score		
au	Model	d = 10	d = 20	d = 50	d = 10	d = 20	d = 50
$ au=rac{1}{4}$	WA-GAN	0.0103	0.0074	0.0054	67.311	62.905	42.825
	HTGAN	0.0146	0.0185	0.0199	1479.9	3106.7	1170.7
	GPGAN	0.0262	0.0321	0.0326	66.663	65.429	52.133
$ au = rac{1}{2}$	WA-GAN	0.0176	0.0207	0.0097	66.734	52.832	32.468
	HTGAN	0.0247	0.0179	0.0126	2725.3	1447.9	2367.4
	GPGAN	0.0511	0.0671	0.0672	67.841	55.308	46.996
$\tau = \frac{3}{4}$	WA-GAN	0.0208	0.0266	0.0158	59.548	44.602	31.808
	HTGAN	0.0284	0.0338	0.055	891.62	612.44	440.45
	GPGAN	0.0497	0.0726	0.0818	59.919	53.758	45.541

Illustration: extremal coefficients



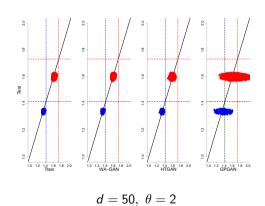
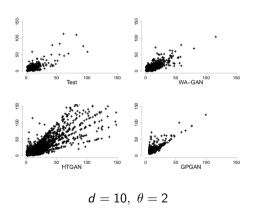
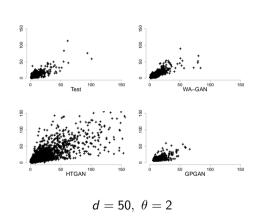


Illustration: generated extremes





Angular measure modeling

Multivariate Generalized Pareto modeling

Numerical results

Simulated data: logistic model

Real data: daily returns of industry portfolios

Conclusions and extensions

Walue-averaged daily returns of d=30 industry portfolios compiled and posted as part of the Kenneth French Data Library ²

 $^{^2} https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html$

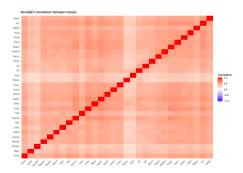
- Walue-averaged daily returns of d=30 industry portfolios compiled and posted as part of the Kenneth French Data Library ²
- Between 1950 and 2015 ($n = 16\,694$). We take $n_{\text{train}} = 7\,000$, $n_{\text{val}} = 3\,000$, $n_{\text{test}} = 6\,694$ and $k = \sqrt{n_{\text{train}}}$

 $^{^2} https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html$

- \blacksquare Value-averaged daily returns of d=30 industry portfolios compiled and posted as part of the Kenneth French Data Library 2
- Between 1950 and 2015 ($n = 16\,694$). We take $n_{\text{train}} = 7\,000$, $n_{\text{val}} = 3\,000$, $n_{\text{test}} = 6\,694$ and $k = \sqrt{n_{\text{train}}}$
- ightharpoonup Extreme losses ightharpoonup data multiplied by -1

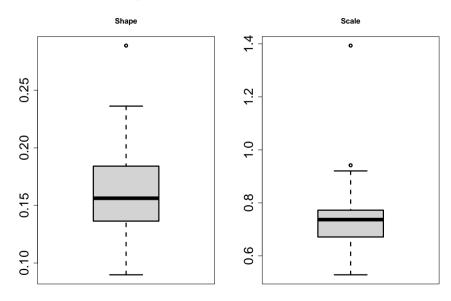
 $^{^2} https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html$

- \blacksquare Value-averaged daily returns of d=30 industry portfolios compiled and posted as part of the Kenneth French Data Library 2
- Between 1950 and 2015 ($n = 16\,694$). We take $n_{\text{train}} = 7\,000$, $n_{\text{val}} = 3\,000$, $n_{\text{test}} = 6\,694$ and $k = \sqrt{n_{\text{train}}}$
- ightharpoonup Extreme losses ightharpoonup data multiplied by -1



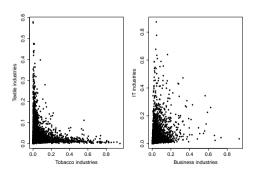
²https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

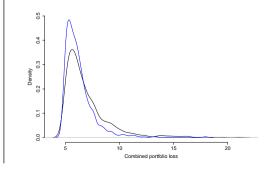
Marginal parameters of the GPD



method	dependence	extremes
WA-GAN	0.018	11.93
HTGAN	0.026	/
GPGAN	0.043	8.46

method	dependence	extremes
WA-GAN	0.018	11.93
HTGAN	0.026	/
GPGAN	0.043	8.46





Angular measure modeling

Multivariate Generalized Pareto modeling

Numerical results

Simulated data: logistic model

Real data: daily returns of industry portfolios

Conclusions and extensions

- \checkmark WA-GAN method to sample from angular measures w.r.t. L_1 -norm
- Simple post-processing allows for arbitrary norm
- Captures the dependence structure in moderately high dimensions
- ✓ May be used to sample from the associated MGPD if the margins are supposed to be in the DoA of univariate GPDs

- \checkmark WA-GAN method to sample from angular measures w.r.t. L_1 -norm
- ✓ Simple post-processing allows for arbitrary norm
- ☑ Captures the dependence structure in moderately high dimensions
- ✓ May be used to sample from the associated MGPD if the margins are supposed to be in the DoA of univariate GPDs
- No uncertainty quantification but can be done via "bootstrap"
- Many other architectures possible for the networks, some of which may be more adapted to particular data types

Thank you!

▼ stephane.lhaut@uclouvain.be

References

- Girard, S., Gobet, E., and Pachebat, J. (2024).

 Deep generative modeling of multivariate dependent extremes.

 HAL preprint, hal-04700084v2, pages 1–35.
- Lhaut, S., Rootzén, H., and Segers, J. (2025).
 Wasserstein-Aitchison GAN for angular measures of multivariate extremes.
- Li, J., Li, D., Li, P., and Samorodnitsky, G. (2024).

 Generalized Pareto GAN: Generating extremes of distributions.

 In *Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN)*, pages 1–8. IEEE.