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Introduction, Motivation & Background
Generative Modeling

This chapter explores AI in the context of extreme events, with a focus on
generative models.

It highlights the limitations of mainstream AI approaches in simulating
heavy-tailed phenomena and presents fresh solutions.

This talk focus on Generative Adversarial Networks (GANs).

The chapter also discussed Variational Auto-Encoders and Difussion
Models.
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What is Generative Modeling?

Given {xi}ni=1 from an unknown distribution pX.
The goal of generative modeling is to find:

latent distribution: pZ defined on some set Z.
generator: G : Z → X .

such that

G (Z) d
= X, Z ∼ pZ

We do not want to infer the unknown distribution pX from the data.

Theorem

(Kuratowski). Let ( Z, µZ ) and ( X , µX ) be two Polish probability spaces.
Then, there exists a (non-unique) measurable bijection G : Z → X such that
µZ

{
G−1(E )

}
= µX(E ) and µX{G (F )} = µZ(F ), for all Borel sets E ⊂ X and

F ⊂ Z.

In practice, distributions easy to simulate are considered for pZ (Gaussian,
uniform, etc). The modelling effort is usually put on the generator.
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Generative Modeling Framework

Focus on a parametric family of generators {Gθ}θ∈Θ where Θ ⊂ Rp such
that Gθ(Z) ∼ Pθ.

The problem comes in finding the ’best’ parameter θ∗ such that pθ, and
pX are as close as possible:

Gθ∗(Z)
d
≈ X , for a given Z ∼ pZ

Ingredients:
The observations x1, . . . , xn with their underlying properties.
Inputs: Gθ and the latent distribution pZ.
The distance or the similarity criterion between pθ and pX, and the
optimization process that defines the optimal θ.
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How AI Uses Generative Models

Model Type Example
Models

Applications Image

Variational Autoen-
coders (VAEs)

VAE, β-
VAE

Image reconstruction
Anomaly detection
Medical imaging

Generative Adver-
sarial Networks
(GANs)

StyleGAN
CycleGAN

Realistic face genera-
tion
Image-to-image
translation
Deepfakes

Diffusion Models DALL·E 2
Imagen
Midjourney

Text-to-image gener-
ation
High-resolution art-
work
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Neural networks

Neural networks: Building block for generative models.

Consider a neural network parametrization of Gθ.

Neural networks:
Non-linear function built with a fixed number of neurons, each one
representing a function, and distributed across several hidden layers.

One-hidden layer neural network Gθ : Rq → R composed of K neurons

Gθ(z) = b2 +

K∑
k=1

w2,kσ (⟨w1,k , z⟩+ b1,k) ,

θ := {b2} ∪ {w1,k ,w2,k , b1,k}Kk=1 ∈ Θ := R× (Rq × R× R)K

where ⟨·, ·⟩ is a scalar product on Rq, and σ : R→ R is a non-linear
activation function, q is the dimension of Z.
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Neural networks

One-hidden layer neural network

K = 4 neurons and input dimension
q = 3, the arrows are different
parameters θ.
Figure from Handbook on Statistics of
Extremes

Examples of activation functions:
The cosine squasher

σ(x) =
cos(x + 3π/2) + 1

2
I
(
x ∈

[
−
π

2
,
π

2

])
+ I

(
x ∈

( π
2
,∞

))

The logistic squasher

σ(x) =
1

1 + e−x

The exponential Linear Unit (eLU)
defined for all α > 0 by

σα(x) = α{exp(x)− 1}I (x < 0) + xI (x ≥ 0)

The Rectified Linear Unit (ReLU)

σ(x) = max(x , 0)
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Neural networks

Ideally Gθ → G as K →∞ for different assumptions of G .

Theorem

(Universal approximation theorem). Suppose G is a continuous function on a
compact space Z ⊂ Rq and σ is not a polynomial. Then, for any ε > 0, there
exists a one-hidden layer neural network Gθ (for some K depending on ε ) such
that

sup
z∈Z
|G (z)− Gθ(z)| < ε

Assumption: function G to approximate is continuous on a compact set
and thus bounded.
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Examples G = F−1
X approximate the quantile function.

Figure: One-hidden layer neural network approximation of quantile functions
z ∈ [0, 1) 7→ F−1

X (z) from (a) Beta (2,2) and (b) Pareto (ξ = 0.5) distributions. The
y-axis of (b) is in log-scale. Figure from Handbook on Statistics of Extremes.
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Generative Adversarial Network

Goal: Have a generator G such that G (Z)
d
≈ X , for Z ∼ pZ

A GAN aims at approximating the unknown generator G through a
parametric family of neural networks

{Gθ : Rq → RD}θ∈Θ

Estimate the optimal θ∗ by optimizing an objective function: adversarial
game between a generator and a discriminator.

{Dφ : RD → [0, 1]}φ∈Φ

Optimization problem:

argminθ∈Θ max
φ∈Φ

(
EpX {logDφ(X)}+ EpZ

{
log

[
1−Dφ

{
Gθ(Z)

}]})
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Generative Adversarial Network
Learning about EDI from Data

Generator: generate realistic data.

Discriminator: tries to discriminate between synthetic generated data and
real observations. Dφ(x) represents the probability that an observation
x ∈ RD is drawn from X ∼ pX .

Figure: A GAN model with q = 3 (dimension of the latent noise) and D = 2 (dimension
of data points). Figure from Handbook on Statistics of Extremes.
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Main problem?
Simulating extremes

Theorem

(Universal approximation theorem). Suppose G is a continuous function on a
compact space Z ⊂ Rq and σ is not a polynomial. Then, for any ε > 0, there
exists a one-hidden layer neural network Gθ (for some K depending on ε ) such
that

sup
z∈Z
|G (z)− Gθ(z)| < ε

If G is not bounded there is no theoretical guarantee that a neural network
could uniformly approximate G .

Generator: G (Z )
d
= X , for Z ∼ PZ

Set G := F−1
X and Z ∼ U(0, 1).

Since Z is a bounded random variable, when the activation function σ is
continuous, GθK (Z ) is also a bounded random variable.
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Why is this a problem?
Simulating extremes

Heavy tailed-distributions (regularly varying RV−1/γ):

1− FX (x) = x−1/γLX (x), x →∞

with LX a slow varying function L(tx)/L(x)→ 1 for all t > 0.

Tail index γ controls the tail: the larger the heavier.

Property of class RV: F−1
X (z) ∼ (1− z)−γℓ(1/(1− z)).

And F−1
X (z)→∞ as z → 1 (fast).

Light-tailed: Exponential distribution 1− F (x) = e−λx and
F−1(z) = −log(1− z)/λ. F−1

X (z)→∞ as z → 1 (slow).
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Why is this a problem?
Simulating extremes

For light-tailed the quantile function diverges to infinity slowly compared to
heavy tails.
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Simulating extremes with GANs
Financial Illustration from Chapter

Data: daily log-returns of financial stock market indices.

Six indices: NKX (Nikkei, Japan), KOSPI (Korea), HSI (Hong-Kong), CAC
(France), AMX (Amsterdam Exchange, Netherlands), Nasdaq (USA).

GAN is assessed on:

Table: Tail index estimates from GAN approach applied to real financial data.

Index Original Data GAN Data
AEX 0.268 0.124
CAC 0.292 0.135
NKX 0.357 0.114
KOPSI 0.251 0.120
HSI 0.226 0.127
NDQ 0.352 0.166
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Simulating extremes with GANs
Financial Illustration from Chapter

Figure: Log quantile-quantile plots from GAN approach ξ = 0.95 (black: real data,
blue: GAN data). Figure from Handbook on Statistics of Extremes.
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Improvements of GANs

Some ideas:
Pre-processing of the data to get rid of the tail heaviness,
Use of heavy-tailed latent variables.
Adapt the optimization problem to the heavy-tail situation.

EV-GAN and Tail-GAN

f TIF(z) = −
log

{
F−1

X (z)
}

log{ϕ(z)} , ϕ(z) =
1− z2

2
, z ∈ [0, 1)

is continuous, bounded on [0, 1] and tends to the tail index as z → 1.

Theoretical guarantee that a neural network could uniformly approximate
G .

But usually not differentiable at z = 1.
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EV-GAN

Corrected version of the TIF is introduced:

f CTIF
β (z) = f TIF(z)−

6∑
j=1

βjej(z)

where β = (β1, . . . , β6)
T is to be estimated, and {e1, . . . , e6} are universal

functions. When ρ ∈ [−2,−1), there exist θ ∈ R3K+1,β ∈ R6 and C > 0 such that

sup
z∈[0,1]

∣∣∣f CTIF
β (z)− Gθ(z)

∣∣∣ ≤ C × K τ

Leading to

W1(θ,β) =

∫ 1

0

∣∣∣F−1
X (z)− ϕ(z)−G̃θ ,β(z)

∣∣∣ dz

where G̃θ,β is the enriched version of the generator Gθ defined as

G̃θ,β(z) = Gθ(z) +
6∑

j=1

βjej(z)

V. Palacios GANs 19 / 23



EV-GAN

The optimization process is the same as before.

The only difference comes from the generator’s design.

EV-GAN Generator
1 Require: Trained parameters ( θ,β )
2 Generate latent variable Z in dimension q ≥ D, from U(0, 1)
3 for each marginal d = 1 : D do
4 GEVGAN ,(d)

θ,β (Z) = ϕ (Zd)
−{Gθ(Z)+

∑6
j=1 βj ej Zd}

5 end for

The generator is:

X
d
≈ ϕ(Z )−G̃θ ,β(Z)

, with Z d
= U(0, 1).
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Simulating extremes with GANs
Financial Illustration from Chapter

Figure: Log quantile-quantile plots from GAN approach ξ = 0.95 (black: real data,
blue: GAN data, orange: EV-GAN). Figure from Handbook on Statistics of Extremes.
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Closing Remarks
Final Comments

When the target random quantity is supposed to be heavy-tailed, the
usual generative models cannot reproduce this property without dedicated
architecture improvements.

For example EV-GAN.

The chapter also discussed improvements for Variational Auto-Encoders
and Difussion Models.
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