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Introduction, Motivation & Background

Generative Modeling

@ This chapter explores Al in the context of extreme events, with a focus on
generative models.

@ It highlights the limitations of mainstream Al approaches in simulating
heavy-tailed phenomena and presents fresh solutions.

@ This talk focus on Generative Adversarial Networks (GANs).

@ The chapter also discussed Variational Auto-Encoders and Difussion
Models.
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What is Generative Modeling?

e Given {x;}/_; from an unknown distribution px.
@ The goal of generative modeling is to find:

o latent distribution: pz defined on some set Z.
e generator: G: Z — X.

such that

GZ)LX, Z~p;

@ We do not want to infer the unknown distribution px from the data.

Theorem

(Kuratowski). Let ( Z,uz ) and ( X, ux ) be two Polish probability spaces.
Then, there exists a (non-unique) measurable bijection G : Z — X such that

pz { G HE)} = ux(E) and ux{G(F)} = uz(F), for all Borel sets E C X and
FcZz.

@ In practice, distributions easy to simulate are considered for pz (Gaussian,
uniform, etc). The modelling effort is usually put on the generator.
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Generative Modeling Framework

@ Focus on a parametric family of generators {Gg}gc.g Where ® C RP such
that Gg(Z) ~ Pg.

@ The problem comes in finding the 'best’ parameter 6* such that pg, and
px are as close as possible:

Go+(Z) S X, foragiven Z ~ pz

@ Ingredients:
e The observations xq, .. ., X, with their underlying properties.
o Inputs: Gg and the latent distribution pz.
e The distance or the similarity criterion between pg and px, and the
optimization process that defines the optimal 6.
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How Al Uses Generative Models

Model Type Example Applications
Models
Variational Autoen- | VAE, (- | Image reconstruction
coders (VAEs) VAE Anomaly detection
Medical imaging
Generative Adver- | StyleGAN Realistic face genera-
sarial Networks | CycleGAN | tion
(GANs) Image-to-image
translation
Deepfakes
Diffusion Models DALL-E 2 Text-to-image gener-
Imagen ation
Midjourney | High-resolution art-

work
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Neural networks

@ Neural networks: Building block for generative models.
@ Consider a neural network parametrization of Gg.

Neural networks:

@ Non-linear function built with a fixed number of neurons, each one
representing a function, and distributed across several hidden layers.

@ One-hidden layer neural network Gy : R9 — R composed of K neurons

K

Go(z) = bo + Z Wo k0 ((W1 k,2Z) + b1 k),
k=1

0 := {bo} U{wy s ok b}, €@ :=Rx (R xR xR)"

where (-, -} is a scalar product on R?, and ¢ : R — R is a non-linear
activation function, g is the dimension of Z.
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Neural networks

One-hidden layer neural network
Examples of activation functions:
@ The cosine squasher

0O ot = LI ([ 2T]) 41 v (F1)
G
@ The logistic squasher
o0 = =

@ The exponential Linear Unit (eLU)
defined for all o > 0 by

K = 4 neurons and input dimension () = afexp(x) — 1}(x < 0) + xI(x > 0)
g = 3, the arrows are different
parameters 6.

Figure from Handbook on Statistics of o(x) = max(x, 0)
Extremes

@ The Rectified Linear Unit (RelLU)
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Neural networks

@ ldeally Gg — G as K — oo for different assumptions of G.

Theorem

(Universal approximation theorem). Suppose G is a continuous function on a
compact space Z C RY and o is not a polynomial. Then, for any € > 0, there

exists a one-hidden layer neural network Gg (for some K depending on € ) such
that

sup|G(z) — Go(2)| < ¢

zeZ

@ Assumption: function G to approximate is continuous on a compact set
and thus bounded.
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Examples G = F;l approximate the quantile function.

(n (2

Figure: One-hidden layer neural network approximation of quantile functions
z€[0,1) = Fx'(z) from (a) Beta (2,2) and (b) Pareto (¢ = 0.5) distributions. The
y-axis of (b) is in log-scale. Figure from Handbook on Statistics of Extremes.
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Generative Adversarial Network

@ Goal: Have a generator G such that G(Z) S X, for Z ~ pz

@ A GAN aims at approximating the unknown generator G through a
parametric family of neural networks

{Go : R = RP}gco

@ Estimate the optimal 8* by optimizing an objective function: adversarial
game between a generator and a discriminator.

{Ds : R = [0, 1]}pco
@ Optimization problem:

argmingeg max (Epx {log Dy(X)} + Ep, {log [1 — Dy {Gaz)}] })
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Generative Adversarial Network
Learning about EDI from Data

@ Generator: generate realistic data.

@ Discriminator: tries to discriminate between synthetic generated data and
real observations. Dg(x) represents the probability that an observation
x € RP is drawn from X ~ px.

L De(X
';f:r;O '35 J

Dy (Gocz))

21077
@

O
@

z

2
23

Figure: A GAN model with g = 3 (dimension of the latent noise) and D = 2 (dimension
of data points). Figure from Handbook on Statistics of Extremes.
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Main problem?

Simulating extremes

Theorem

(Universal approximation theorem). Suppose G is a continuous function on a
compact space Z C RY and o is not a polynomial. Then, for any € > 0, there
exists a one-hidden layer neural network Gg (for some K depending on € ) such
that

sup|G(z) — Go(z)| <€

zeZ

V.

o If G is not bounded there is no theoretical guarantee that a neural network
could uniformly approximate G.

e Generator: G(Z) 2 X, for Z ~ P
@ Set G:= Fy'and Z~ U(0,1).

@ Since Z is a bounded random variable, when the activation function o is
continuous, Gy, (Z) is also a bounded random variable.
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Why is this a problem?

Simulating extremes

Heavy tailed-distributions (regularly varying RV_y,,):
1— Fx(x) =x"YLx(x), x— oo

with Lx a slow varying function £(tx)/L£(x) — 1 for all t > 0.
Tail index «y controls the tail: the larger the heavier.
Property of class RV: Fy'(z) ~ (1 — 2)77¢(1/(1 — 2)).

And Fxt(z) — oo as z — 1 (fast).

Light-tailed: Exponential distribution 1 — F(x) = e~ and
F~Y(z) = —log(1 — z)/X\. Fx'(z) — o0 as z — 1 (slow).
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Why is this a problem?

Simulating extremes

@ For light-tailed the quantile function diverges to infinity slowly compared to

heavy tails.
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Simulating extremes with GANs

Financial lllustration from Chapter

@ Data: daily log-returns of financial stock market indices.

o Six indices: NKX (Nikkei, Japan), KOSPI (Korea), HSI (Hong-Kong), CAC
(France), AMX (Amsterdam Exchange, Netherlands), Nasdaq (USA).

@ GAN is assessed on:

Table: Tail index estimates from GAN approach applied to real financial data.

Index  Original Data GAN Data

AEX 0.268 0.124
CAC 0.292 0.135
NKX 0.357 0.114
KOPSI 0.251 0.120
HSI 0.226 0.127
NDQ 0.352 0.166
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Simulating extremes with GANs

Financial Illustration from Chapter

Figure: Log quantile-quantile plots from GAN approach £ = 0.95 (black: real data,
blue: GAN data). Figure from Handbook on Statistics of Extremes.
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Improvements of GANs

@ Some ideas:

o Pre-processing of the data to get rid of the tail heaviness,
o Use of heavy-tailed latent variables.
o Adapt the optimization problem to the heavy-tail situation.

@ EV-GAN and Tail-GAN

2

TIF __Iog{F;l(z)} 2 1—z
O ey YT

is continuous, bounded on [0, 1] and tends to the tail index as z — 1.

z€]0,1)

@ Theoretical guarantee that a neural network could uniformly approximate

G.
@ But usually not differentiable at z = 1.
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EV-GAN

@ Corrected version of the TIF is introduced:

() = F1(2) = D_Bie(2)

where 8 = (6, .. ., 56)T is to be estimated, and {ey, ..., e} are universal
functions. When p € [-2, —1), there exist 8 € R**! 3 € R® and C > 0 such that

sup
z€[0,1]

£ (2) — Ge(z)’ <CxK

@ Leading to

wi(e, 8 / |Fx(2) = e(2)" %77 dz

where G@ﬂ is the enriched version of the generator Gg defined as

Go(2) = Go(z) + >_ Brei(2)

=1
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EV-GAN

@ The optimization process is the same as before.

@ The only difference comes from the generator’s design.

o EV-GAN Generator

© Require: Trained parameters ( 6,3 )
© Generate latent variable Z in dimension g > D, from U(0, 1)
@ for each marginal d =1: D do
_ 6
[ GgéGAN x(d)(z) = (Z4) {Gozy+ =21 BjeZ4}
@ end for

@ The generator is:

X~ p(z)"%P” with  z2 U0 1).

V. Palacios GANs 20/23



Simulating extremes with GANs

Financial Illustration from Chapter

Figure: Log quantile-quantile plots from GAN approach £ = 0.95 (black: real data,
blue: GAN data, orange: EV-GAN). Figure from Handbook on Statistics of Extremes.
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Closing Remarks

Final Comments

@ When the target random quantity is supposed to be heavy-tailed, the
usual generative models cannot reproduce this property without dedicated
architecture improvements.

@ For example EV-GAN.

@ The chapter also discussed improvements for Variational Auto-Encoders
and Difussion Models.
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